Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duong Thi Minh
Xem chi tiết
Min
27 tháng 5 2017 lúc 19:17

đặt \(x^2+2x=a\) , thay vào pt ta được:

\(\sqrt{3a+16}+\sqrt{a}=2\sqrt{a+4}\)

\(\Leftrightarrow\left(\sqrt{3a+16}\right)^2=\left(2\sqrt{a+4}-\sqrt{a}\right)^2\)

\(\Leftrightarrow3a+16=4a+16-4\sqrt{a\left(a+4\right)}+a\)

\(\Leftrightarrow\left(4\sqrt{a^2+4a}\right)^2=\left(2a\right)^2\)

\(\Leftrightarrow16a^2+64a=4a^2\)

\(\Leftrightarrow12a^2+64a=0\Leftrightarrow\orbr{\begin{cases}a=0\\a=-\frac{16}{3}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+2x=0\\x^2+2x=-\frac{16}{3}\end{cases}}\)

Tự giải tiếp nhá

Min
27 tháng 5 2017 lúc 19:20

bạn đặt điều kiện cho a là \(a\ge-4\) rồi loại trường hợp \(a=\frac{-16}{3}\)

Duong Thi Minh
27 tháng 5 2017 lúc 19:59

Mơn b nhé,Min......

Dương Thị Thu Hiền
Xem chi tiết
Trúc Giang
28 tháng 11 2021 lúc 17:41

b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)

\(\Rightarrow a^2+3-4a=0\)

=> (a - 3).(a - 1) = 0

=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)

Bình phương lên giải tiếp nhé!

c) Tương tư câu b nhé

 

Dương Thị Thu Hiền
Xem chi tiết
Trúc Giang
28 tháng 11 2021 lúc 17:58

Tớ đã trả lời ở câu hỏi mới nhất r nên xin phép được xóa câu hỏi này nhé

Dương Thị Thu Hiền
Xem chi tiết
Big City Boy
Xem chi tiết
Phạm Xuân Bách
Xem chi tiết
Lê Song Phương
26 tháng 8 2023 lúc 18:50

Chỗ Bunyakovsky mình sửa lại 1 chút:

\(\left(1.\sqrt{x-2}+1.\sqrt{4-x}\right)^2\) \(\le\left(1^2+1^2\right)\left[\left(\sqrt{x-2}\right)^2+\left(\sqrt{4-x}\right)^2\right]\)

\(=2\left(x-2+4-x\right)\) \(=4\)

\(\Rightarrow\sqrt{x-2}+\sqrt{4-x}\le2\)

Hơn nữa \(x^2-6x+11=\left(x-3\right)^2+2\ge2\)

Từ đó dấu "=" phải xảy ra ở cả 2 BĐT trên, tức là:

\(\left\{{}\begin{matrix}\sqrt{x-2}=\sqrt{4-x}\\x-3=0\end{matrix}\right.\Leftrightarrow x=3\)

Vậy pt đã cho có nghiệm duy nhất \(x=3\)

Nguyễn Đức Trí
26 tháng 8 2023 lúc 19:05

Đính chính

...Áp dụng bất đẳng thức Bunhiacopxki ta có :

\(\left(1.\sqrt[]{x-2}+1.\sqrt[]{4-x}\right)^2\le\left(1^2+1^2\right)\left(x-2+4-x\right)=2.2=4\)

\(\Rightarrow\sqrt[]{x-2}+\sqrt[]{4-x}\le2\)

mà \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

\(pt\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt[]{x-2}}=\dfrac{1}{\sqrt[]{4-x}}\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=4-x\\x=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=6\\x=3\end{matrix}\right.\) \(\Leftrightarrow x=3\)

Vậy \(x=3\) là nghiệm của pt (1)

Nguyễn Đức Trí
26 tháng 8 2023 lúc 17:43

\(\sqrt[]{x-2}+\sqrt[]{4-x}=x^2-6x+11\left(1\right)\)

\(\Leftrightarrow1.\sqrt[]{x-2}+1.\sqrt[]{4-x}=x^2-6x+11\)

Điều kiện xác định khi và chỉ khi

\(\left\{{}\begin{matrix}x-2\ge0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le4\end{matrix}\right.\) \(\Leftrightarrow2\le x\le4\)

Áp dụng bất đẳng thức Bunhiacopxki, ta có :

\(1.\sqrt[]{x-2}+1.\sqrt[]{4-x}\le\left(1^2+1^2\right).\left(x-2+4-x\right)=2.2=4\)

\(\Rightarrow\sqrt[]{x-2}+\sqrt[]{4-x}\le4\)

\(pt\left(1\right)\Leftrightarrow x^2-6x+11=4\)

\(\Leftrightarrow x^2-6x+7=0\)

\(\Delta'=9-7=2>0\)

⇒ pt có 2 nghiệm phân biệt \(x=3\pm\sqrt[]{2}\)

Vậy nghiệm của pt đã cho là \(x=3\pm\sqrt[]{2}\)

 

luu thanh huyen
Xem chi tiết
Nguyễn Vũ Thắng
5 tháng 11 2018 lúc 11:40

ĐKXĐ \(2\le x\le4\).Đặt A=\(\sqrt[4]{\left(x-2\right)\left(4-x\right)}+\sqrt[4]{x-2}+\sqrt[4]{4-x}+6x\sqrt{3x}\)

Do x\(\ge2>0\)nên ADBĐT CAUCHY ta được:

\(\sqrt[4]{1\cdot1\cdot\left(x-2\right)\left(4-x\right)}\le\frac{1+1+x-2+4-x}{4}=1\)

\(\sqrt[4]{x-2}\le\frac{1+1+1+x-2}{4}=\frac{1}{4}\)

\(\sqrt[4]{4-x}\le\frac{1+1+1+4-x}{4}=\frac{7}{4}\)

\(6x\sqrt{3x}=2\sqrt{27x^3}\le x^3+27\)

_Do đó A\(\le1+\frac{1}{4}+\frac{7}{4}+x^3+27=x^3+30\)

Dấu = xảy ra \(\Leftrightarrow x=3\)(thỏa mãn ĐKXĐ)

Cold Wind
Xem chi tiết
Akai Haruma
27 tháng 3 2018 lúc 19:12

Lời giải:

ĐKXĐ: \(-2\leq x\leq 2\)

Ta có: \(\sqrt{2x+4}=\frac{6x-4}{\sqrt{x^2+4}}+2\sqrt{2-x}\)

\(\Leftrightarrow \sqrt{2x+4}-2\sqrt{2-x}=\frac{6x-4}{\sqrt{x^2+4}}\)

\(\Leftrightarrow \sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)

\(\Leftrightarrow \frac{2x+4-(8-4x)}{\sqrt{2x+4}+\sqrt{8-4x}}=\frac{6x-4}{\sqrt{x^2+4}}\)

\(\Leftrightarrow \frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}=\frac{6x-4}{\sqrt{x^2+4}}\)

\(\Leftrightarrow (6x-4)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)

\(\Leftrightarrow \left[\begin{matrix} 6x-4=0(1)\\ \sqrt{2x+4}+\sqrt{8-4x}=\sqrt{x^2+4}(2)\end{matrix}\right.\)

\((1)\Rightarrow x=\frac{2}{3}\) (thỏa mãn)

Xét (2) \(\Rightarrow 2x+4+8-4x+2\sqrt{(2x+4)(8-4x)}=x^2+4\)

\(\Leftrightarrow 12-2x+4\sqrt{2(4-x^2)}=x^2+4\)

\(\Leftrightarrow 4\sqrt{2(4-x^2)}=x^2+2x-8=(x-2)(x+4)\)

\(\Leftrightarrow \sqrt{2-x}(4\sqrt{2(x+2)}+(x+4)\sqrt{2-x})=0\)

Hiển nhiên biểu thức dài trong ngoặc luôn lớn hơn 0 \((x\geq -2\rightarrow x+4\geq 2\) )

Do đó \(\sqrt{2-x}=0\Leftrightarrow x=2\) (cũng thỏa mãn)

Vậy ....

vu doanquang
30 tháng 11 2019 lúc 5:20

tự làm điều kiện nhé:

pt⇔\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{6x-4}{\sqrt{x^2+4}}\)

\(\frac{2x+4-4\left(2-x\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{6x-4}{\sqrt{x^2+4}}\) \(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{1}{\sqrt{x^2+4}}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\\sqrt{2x+4}+2\sqrt{2-x}=\sqrt{x^2+4}\left(\circledast\right)\end{matrix}\right.\) giải (✳): ta dc x=2

bình phương 2 vế lên giải nhé

cuối cùng xét điều kiện rồi kết luận nghiện

Khách vãng lai đã xóa
An Đinh Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 8 2023 lúc 9:33

a:

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\)

=>|x-3|=3

=>x-3=3 hoặc x-3=-3

=>x=0 hoặc x=6

b: \(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)

=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)

=>\(\left|\sqrt{x-1}+1\right|=2\)

=>\(\left[{}\begin{matrix}\sqrt{x-1}+1=2\\\sqrt{x-1}+1=-2\left(loại\right)\end{matrix}\right.\Leftrightarrow\sqrt{x-1}=1\)

=>x-1=1

=>x=2

c:

ĐKXĐ: x>4/5

PT \(\Leftrightarrow\sqrt{\dfrac{5x-4}{x+2}}=2\)

=>\(\dfrac{5x-4}{x+2}=4\)

=>5x-4=4x+8

=>x=12(nhận)

d: ĐKXĐ: x-4>=0 và x+1>=0

=>x>=4

PT =>\(\left(\sqrt{x-4}+\sqrt{x+1}\right)^2=5^2=25\)

=>\(x-4+x+1+2\sqrt{\left(x-4\right)\left(x+1\right)}=25\)

=>\(\sqrt{4\left(x^2-3x-4\right)}=25-2x+3=28-2x\)

=>\(\sqrt{x^2-3x-4}=14-x\)

=>x<=14 và x^2-3x-4=(14-x)^2=x^2-28x+196

=>x<=14 và -3x-4=-28x+196

=>x<=14 và 25x=200

=>x=8(nhận)

HT.Phong (9A5)
16 tháng 8 2023 lúc 9:37

a) \(\sqrt{x^2-6x+9}=3\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\)

\(\Leftrightarrow\left|x-3\right|=3 \)

TH1: \(\left|x-3\right|=x-3\) với \(x\ge3\)

Pt trở thành:

\(x-3=3\) (ĐK: \(x\ge3\))

\(\Leftrightarrow x=3+3\)

\(\Leftrightarrow x=6\left(tm\right)\)

TH2: \(\left|x-3\right|=-\left(x-3\right)\) với \(x< 3\)

Pt trở thành:

\(-\left(x-3\right)=3\) (ĐK: \(x< 3\))

\(\Leftrightarrow x-3=-3\)

\(\Leftrightarrow x=-3+3\)

\(\Leftrightarrow x=0\left(tm\right)\)

b) \(\sqrt{x+2\sqrt{x-1}}=2\) (ĐK: \(x\ge1\))

\(\Leftrightarrow x+2\sqrt{x-1}=4\)

\(\Leftrightarrow2\sqrt{x-1}=4-x\)

\(\Leftrightarrow4\left(x-1\right)=16-8x+x^2\)

\(\Leftrightarrow4x-4=16-8x+x^2\)

\(\Leftrightarrow x^2-12x+20=0\)

\(\Leftrightarrow\left(x-10\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=10\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

c) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (ĐK: \(x\ge\dfrac{4}{5}\))

\(\Leftrightarrow\dfrac{5x-4}{x+2}=4\)

\(\Leftrightarrow5x-4=4x+8\)

\(\Leftrightarrow x=12\left(tm\right)\)