Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Trần Hồng Phúc
Xem chi tiết
Thắng Nguyễn
16 tháng 6 2017 lúc 21:08

Từ \(a=b=c\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow}\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=0\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Rightarrow a^2+b^2+c^2=ab+bc+ca\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=3\left(ab+bc+ca\right)\)

\(\Rightarrow\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

Kurosaki Akatsu
16 tháng 6 2017 lúc 21:12

Ta có :

(a + b + c)2 = (a + b + c)(a + b + c) 

                  = a2 + ab + ac + ab + b2 + bc + ac + bc + c2

                  = a2 + b2 + c2 + 2ab + 2bc + 2ca

3(ab + bc + ca) = 3ab + 3bc + 3ca

=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca

=> a2 + b2 + c2  = ab + bc + ca

=> a2 + b2 + c2  - ab - bc - ca = 0

=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0

=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2) = 0

=> (a - b)2 + (b - c)2 + (c - a)2 =0

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\)

l҉o҉n҉g҉ d҉z҉
16 tháng 6 2017 lúc 21:19

Ta có : (a + b + c)2 = a² + b² + c² + 2ab + 2bc + 2ca  = a² + b² + c² + 2(ab + bc + ca)

Nên : a² + b² + c² + 2(ab + bc + ca) = 3(ab + bc + ca)

=> a2 + b2 + c2 = ab + bc + ca 

=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca 

=> 2a2 + 2b2 + 2c- (2ab + 2bc + 2ca) = 0

=> a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2bc - 2ac = 0

<=> a2 - 2ab + b2 + b2 -  2bc + c2 + c2 - 2ac + a2 = 0 

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0 

Mà  (a - b); (b - c)2;(c - a)\(\ge0\forall a,b,c\)ư

Nên a - b = 0 ; b - c = 0 ; c - a = 0 

=> a = b = c 

Thanh Huong
Xem chi tiết
Lê Phan Liễu
Xem chi tiết
minh khôi
Xem chi tiết
Phùng Minh Quân
7 tháng 7 2019 lúc 10:31

\(\frac{a-bc}{a+bc}=\frac{a-bc}{a\left(a+b+c\right)+bc}=\frac{a-bc}{a^2+ab+bc+ca}=\frac{a-bc}{\left(a+b\right)\left(c+a\right)}\)

\(=\left(a-bc\right)\sqrt{\frac{1}{\left(a+b\right)^2\left(c+a\right)^2}}\le\frac{\frac{a-bc}{\left(a+b\right)^2}+\frac{a-bc}{\left(c+a\right)^2}}{2}=\frac{a-bc}{2\left(a+b\right)^2}+\frac{a-bc}{2\left(c+a\right)^2}\)

Tương tự, ta có: \(\frac{b-ca}{b+ca}\le\frac{b-ca}{2\left(b+c\right)^2}+\frac{b-ca}{2\left(a+b\right)^2}\)\(;\)\(\frac{c-ab}{c+ab}\le\frac{c-ab}{2\left(c+a\right)^2}+\frac{c-ab}{2\left(b+c\right)^2}\)

=> \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\le\frac{a-bc+b-ca}{2\left(a+b\right)^2}+\frac{b-ca+c-ab}{2\left(b+c\right)^2}+\frac{a-bc+c-ab}{2\left(c+a\right)^2}\)

\(\frac{\left(a+b\right)\left(1-c\right)}{2\left(a+b\right)\left(1-c\right)}+\frac{\left(b+c\right)\left(1-a\right)}{2\left(b+c\right)\left(1-a\right)}+\frac{\left(c+a\right)\left(1-b\right)}{2\left(c+a\right)\left(1-b\right)}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{3}\)

Sendaris Thalleous
Xem chi tiết
Naruto Uzumaki
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 3 2019 lúc 13:13

Biến đổi tương đương:

\(\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\ge3\left(ab+ac+bc\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b=c\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{ab+ac+bc}\ge3\)

b/ \(VT=\frac{\left(a+b+c\right)^2}{ab+ac+bc}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}=\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}\)

\(\Rightarrow VT\ge\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+ac+bc\right)}{9\left(ab+ac+bc\right)\left(a+b+c\right)^2}}\ge\frac{8.3}{9}+\frac{2}{3}=\frac{10}{3}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Bui Thi Thu Phuong
Xem chi tiết
Lâm Ánh Yên
Xem chi tiết
Hồng Phúc
2 tháng 3 2021 lúc 12:42

Áp dụng BĐT BSC:

\(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\)

\(=\dfrac{b\left(a+b\right)-b^2}{a+b}+\dfrac{c\left(b+c\right)-c^2}{b+c}+\dfrac{a\left(c+a\right)-a^2}{c+a}\)

\(=a+b+c-\left(\dfrac{a^2}{c+a}+\dfrac{b^2}{a+b}+\dfrac{c^2}{c+a}\right)\)

\(\ge a+b+c-\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)

Đẳng thức xảy ra khi \(a=b=c\)

Ngô Thành Chung
2 tháng 3 2021 lúc 14:23

4ab ≤ (a + b)2 ⇒ \(\dfrac{4ab}{a+b}\le a+b\)

Tương tự \(\dfrac{4ac}{a+c}\le a+c\) ; \(\dfrac{4bc}{b+c}\le b+c\)

⇒ Cộng lại vế với vế :

4VT ≤ 2 (a+b+c) ⇒ VT ≤ \(\dfrac{a+b+c}{2}\)

Đặng Gia Ân
Xem chi tiết
Phạm Ngọc Bích
17 tháng 1 2022 lúc 16:23
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Khách vãng lai đã xóa