Cho x,y \(\in\)Q. Chứng tỏ rằng:
a) | x + y | \(\le\) | x | + | y |
Cho \(x,y\in\mathbb{Q}\). Chứng tỏ rằng :
a) \( \left|x+y\right|\le\left|x\right|+\left|y\right|\)
b) \(\left|x-y\right|\le\left|x\right|-\left|y\right|\)
a) Với mọi \(x,y\in Q\), ta luôn luôn có:
\(x\le\left|x\right|\) và \(-x\le\left|x\right|\) ; \(y\le\left|y\right|\) và \(-y\le\left|y\right|\)
Suy ra \(x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)
hay \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
b) Theo câu a ta có:
\(\left|x-y\right|+\left|y\right|\ge\left|x-y+y\right|=\left|x\right|\) ,suy ra \(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
cho\(x;y\in Q\).Chứng tỏ rằng:|x+y|\(\le\)|x|+|y|
với mọi x,y thuộc Q,ta luôn luôn có:
x<|x| và -x<|x|; y<|y| và -y<|y|
=>x+y<|x|+|y| và -x-y<|x|+|y|
=>x+y>-(|x|+|y|)
=>-(|x|+|y|)<x+y<|x|+|y|
=>|x+y|<|x|+|y| (đpcm)
dấu "=" xảy ra <=>xy>0
Cho \(x,y\in Q\). Chứng tỏ rằng:
a) \(|x+y|\le\left|x\right|+\left|y\right|\)
b) \(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
cho x,y \(\in\)Q chứng tỏ rằng
a) |x+y|\(\le\)|x|+|y|
b) |x| \(-\)|y| \(\ge\)|x \(-\)y|
Cho x, y \(\in\) Q, chứng tỏ rằng:
a) \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
b) \(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
a, Vì hai vế đều ko âm nên ta đuợc :
\(\left|x+y\right|^2\)<=\(\left(\left|x\right|^2+\left|y\right|^2\right)\)
<=> (x+y)(x+y) <= \(\left(\left|x\right|+\left|y\right|\right)\left(\left|x\right|+\left|y\right|\right)\)
<=> \(x^2+2xy+y^2\) <= \(x^2+2\left|x\right|\left|y\right|+y^2\)
<=> xy <= |xy| ( Luôn đúng với mọi x và y )
Vậy BĐT trên đúng. Dấu ' = ' xảy ra khi x, y cùng dấu
b, Áp dụng từ câu a , bạn suy ra nhé !
a) cả 2 vế không âm nên bình phương 2 vế ta được :
\(\left|x+y\right|^2\le\left(\left|x\right|+\left|y\right|\right)^2\)
\(\Leftrightarrow\left(x+y\right)\left(x+y\right)\le\left(\left|x\right|+\left|y\right|\right).\left(\left|x\right|+\left|y\right|\right)\)
\(\Leftrightarrow x^2+2xy+y^2\le x^2+2.\left|x\right|\left|y\right|+y^2\)
\(\Leftrightarrow xy\le\left|xy\right|\) Điều này luôn đúng với mọi số x ; y .
Vậy bất đẳng thức đã cho đúng . Dầu " ="khí | xý | = xy <=> x ; y cùng dấu .
b) Áp dụng câu a) ta có : | x - y| + |y| \(\ge\) | (x-y) + y | = |x|
=> |x - y | \(\ge\)|x| + | y|
Đầu " = " xảy ra <=> (x-y) và y cùng dấu
a) Với mọi x, y \(\in\) Q ta luôn có x \(\le\) \(\left|x\right|\) và -x \(\le\) \(\left|x\right|\);
y \(\le\) \(\left|y\right|\) và -y \(\le\) \(\left|y\right|\) \(\Rightarrow\) x + y \(\le\) \(\left|x\right|\) + \(\left|y\right|\) và -x - y \(\le\) \(\left|x\right|\) - \(\left|y\right|\)
hay x + y \(\ge\) -( \(\left|x\right|\) + \(\left|y\right|\) ).
Do đó -( \(\left|x\right|\) + \(\left|y\right|\) ) \(\le\) x + y \(\le\) \(\left|x\right|\) + \(\left|y\right|\) .
Vậy \(\left|x+y\right|\le\left|x\right|+\left|y\right|.\)
(Dấu "=" xảy ra khi xy \(\ge\) 0).
b) Theo câu a ta có:\(\left|x-y\right|+\left|y\right|\ge\left|x-y+y\right|=\left|x\right|\Rightarrow\left|x-y\right|\ge\left|x\right|-\left|y\right|.\)
Cho \(x,y\in Q\). Chứng tỏ rằng:
a,\(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
b,\(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
Cho x , y thuộc Q . Chứng tỏ rằng : \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Với mọi \(x,y\in Q\) ta có:
\(\left\{{}\begin{matrix}x\le\left|x\right|;-x\le\left|x\right|\\y\le\left|y\right|;-y\le\left|y\right|\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y\le\left|x\right|+\left|y\right|\\-x-y\le\left|x\right|+\left|y\right|\end{matrix}\right.\)
\(\Rightarrow x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
\(\Rightarrow-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
\(\Rightarrow\left|x+y\right|\le\left|x\right|+\left|y\right|\left(đpcm\right).\)
Dấu '' = '' xảy ra khi \(xy\ge0.\)
Chúc bạn học tốt!
cho x,y \(\in\) Q. chứng tỏ rằng:
a) \(\left|x+y\right|\) \(\le\) \(\left|x\right|+\left|y\right|\)
b) \(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
a) |x| + |y| \(\ge\) |x+y|
Với mọi x,y : |x| \(\ge\) x ( Dấu "=" xảy ra khi x \(\ge\) 0 )
|y| \(\ge\) y ( Dấu "=" xảy ra khi y \(\ge\) 0 )
=> |x| + |y| \(\ge\) x+y (1)
Với mọi x,y : |x| > x ( Dấu "=" xảy ra khi x \(\le\) 0 )
|y| > y ( Dấu "=" xảy ra khi y \(\le\) 0 )
=> |x| + |y| = -(x+y) (2)
Từ (1) và (2) => |x| + |y| \(\ge\) |x+y|
cho x,y\(\in\)Q.Chứng tỏ rằng: |x+y|\(\le\)|x|+|y|
Ta phải CM : - (/x/+/y/)<x+y</x/+/y/
ta thấy : x</x/
y</y/
suy ra x+y </x/+/y/
sau đó bạn CM : - (/x/+/y/)<x+y