Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
giải giúp giùm
Xem chi tiết
cao minh thành
23 tháng 9 2018 lúc 9:04

Ta có:

2A =(\(\sqrt{x^2-4x+9}\)+\(\sqrt{x^2-4x+8}\))(\(\sqrt{x^2-4x+9}\)-\(\sqrt{x^2-4x+8}\))

= x2-4x+9-x2+4x-8

= 1

\(\Rightarrow A=\dfrac{1}{2}\)

Vũ Thị Chi
23 tháng 9 2018 lúc 8:16

Cho biểu thức bằng 2, tính giá trị biểu thức?

giá trị bằng 2 rồi còn tình gì?

Nguyễn Thị Nhung
Xem chi tiết
alibaba nguyễn
7 tháng 11 2016 lúc 19:21

Ta có

\(1\left(\sqrt{x^2-4x+9}+\sqrt{x^2-4x+8}\right)\left(\sqrt{x^2-4x+9}-\sqrt{x^2-4x+8}\right)\)

= x2 - 4x + 9 - x2 + 4x - 8 = 1

=> M = \(\frac{1}{2}\)

Bống
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 22:42

c: Ta có: \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)

\(\Leftrightarrow2\sqrt{x-1}=4\)

\(\Leftrightarrow x-1=4\)

hay x=5

e: Ta có: \(\sqrt{4x^2-28x+49}-5=0\)

\(\Leftrightarrow\left|2x-7\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-7=5\\2x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)

Akai Haruma
8 tháng 10 2021 lúc 8:13

a. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{(x-2)^2}=2-x$

$\Leftrightarrow |x-2|=2-x$
$\Leftrightarrow 2-x\geq 0$

$\Leftrightarrow x\leq 2$

b. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x-2}-\frac{1}{5}\sqrt{25}.\sqrt{x-2}=3\sqrt{x-2}-1$

$\Leftrightarrow 2\sqrt{x-2}-\sqrt{x-2}=3\sqrt{x-2}-1$

$\Leftrightarrow 1=2\sqrt{x-2}$

$\Leftrightarrow \frac{1}{2}=\sqrt{x-2}$

$\Leftrightarrow \frac{1}{4}=x-2$

$\Leftrightarrow x=\frac{9}{4}$ (tm)

Akai Haruma
8 tháng 10 2021 lúc 8:16

c. ĐKXĐ: $x\geq 1$

PT $\Leftrightarrow \sqrt{x-1}+\sqrt{9}.\sqrt{x-1}-\sqrt{4}.\sqrt{x-1}=4$

$\Leftrightarrow \sqrt{x-1}+3\sqrt{x-1}-2\sqrt{x-1}=4$

$\Leftrightarrow 2\sqrt{x-1}=4$

$\Leftrightarrow \sqrt{x-1}=2$

$\Leftrightarrow x-1=4$

$\Leftrightarrow x=5$ (tm)

d. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \frac{1}{2}\sqrt{x-2}-4\sqrt{\frac{4}{9}}\sqrt{x-2}+\sqrt{9}.\sqrt{x-2}-5=0$

$\Leftrightarrow \frac{1}{2}\sqrt{x-2}-\frac{8}{3}\sqrt{x-2}+3\sqrt{x-2}-5=0$

$\Leftrightarrow \frac{5}{6}\sqrt{x-2}-5=0$

$\Leftrightarrow \sqrt{x-2}=6$

$\Leftrightarrow x-2=36$

$\Leftrightarrow x=38$ (tm)

 

vương gia kiệt
Xem chi tiết
bí ẩn
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 0:36

f) Ta có: \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)

\(\Leftrightarrow4\left|x+1\right|-3\left|x+1\right|=4\)

\(\Leftrightarrow\left|x+1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

g) Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)

\(\Leftrightarrow5\sqrt{x+1}-\sqrt{x+1}=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

Nguyễn Aí Linh
Xem chi tiết
Nguyễn Đức Trí
12 tháng 9 2023 lúc 8:19

c) \(\sqrt[]{8+\sqrt[]{x}}+\sqrt{5-\sqrt[]{x}}=5\)

\(\Leftrightarrow\left(\sqrt[]{8+\sqrt[]{x}}+\sqrt{5-\sqrt[]{x}}\right)^2=25\left(1\right)\left(đkxđ:0\le x\le25\right)\)

Áp dụng Bất đẳng thức Bunhiacopxki cho 2 cặp số dương \(\left(1;\sqrt[]{8+\sqrt[]{x}}\right);\left(1;\sqrt{5-\sqrt[]{x}}\right)\)

\(\left(1.\sqrt[]{8+\sqrt[]{x}}+1.\sqrt{5-\sqrt[]{x}}\right)^2\le\left(1^2+1^2\right)\left(8+\sqrt[]{x}+5-\sqrt[]{x}\right)=26\)

\(\left(1\right)\Leftrightarrow26=25\left(vô.lý\right)\)

Vậy phương trình đã cho vô nghiệm

b) \(\sqrt[]{1+4x}+2\sqrt[]{2-x}+2\sqrt[]{\left(1+4x\right)\left(2-x\right)}=3\)  \(\left(đkxđ:-\dfrac{1}{4}\le x\le2\right)\)

\(\)\(\Leftrightarrow\sqrt[]{1+4x}+2\sqrt[]{2-x}=3-2\sqrt[]{\left(1+4x\right)\left(2-x\right)}\)

\(\Leftrightarrow\left(\sqrt[]{1+4x}+2\sqrt[]{2-x}\right)^2=\left[3-2\sqrt[]{\left(1+4x\right)\left(2-x\right)}\right]^2\left(1\right)\)

Áp dụng Bất đẳng thức Bunhiacopxki :

\(\left(1.\sqrt[]{1+4x}+2\sqrt[]{2-x}\right)^2\le\left(1^2+2^2\right)\left(1+4x+2-x\right)=5\left(3x+3\right)\)

Áp dụng Bất đẳng thức Cauchy :

\(2\sqrt[]{\left(1+4x\right)\left(2-x\right)}\le1+4x+2-x=3x+3\)

Dấu "=" xảy ra khi và chỉ khi

\(1+4x=2-x\)

\(\Leftrightarrow x=\dfrac{1}{5}\left(thỏa.đk\right)\)

\(pt\left(1\right)\Leftrightarrow5\left(4x+3\right)=4x+3\)

\(\Leftrightarrow4\left(4x+3\right)=0\)

\(\Leftrightarrow x=-\dfrac{3}{4}\left(k.thỏa.x=\dfrac{1}{5}.vô.lý\right)\)

Vậy phương trình đã cho vô nghiệm

Nguyễn Hoàng Anh Thư
Xem chi tiết
Hoa Trần Thị
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 11 2019 lúc 7:34

\(\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)

Ta có \(\left\{{}\begin{matrix}\sqrt{\left(x-2\right)^2+1}\ge\sqrt{1}=1\\\sqrt{\left(x-2\right)^2+4}\ge\sqrt{4}=2\\\sqrt{\left(x-2\right)^2+5}\ge\sqrt{5}\end{matrix}\right.\) \(\Rightarrow VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)

Dấu "=" xảy ra khi và chỉ khi \(x=2\)

b/ Tương tự:

\(\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}=1+\sqrt{3}\)

\(\left\{{}\begin{matrix}\sqrt{3-\left(x-1\right)^2}\le\sqrt{3}\\\sqrt{1-\left(x+3\right)^2}\le\sqrt{1}=1\end{matrix}\right.\) \(\Rightarrow VT\le1+\sqrt{3}\)

Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\) \(\Rightarrow x=\varnothing\)

Phương trình vô nghiệm

Khách vãng lai đã xóa
Linh Nhi
Xem chi tiết
Edogawa Conan
10 tháng 7 2018 lúc 19:00

\(VT=\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}\)

\(=\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}\)

\(\ge1+2+\sqrt{5}=3+\sqrt{5}=VP\)

Dấu "=" xảy ra khi: \(x=2\)

Hỏi Làm Gì
Xem chi tiết
Trần Minh Hoàng
14 tháng 8 2020 lúc 10:00

Ta thấy PT xác định với mọi x thực.

Đặt \(a=\sqrt{x^2-4x+5}\ge1\).

\(PT\Leftrightarrow\sqrt{a}+\sqrt{a+3}+\sqrt{a+4}=3+\sqrt{5}\left(1\right)\).

Nhận thấy a = 1 thoả mãn.

Nếu \(a>1\Rightarrow VT_{\left(1\right)}>3+\sqrt{5}\)

Do đó a = 1 \(\Leftrightarrow x^2-4x+4=0\Leftrightarrow x=2\).

Vậy nghiệm của pt là x = 2.