Phân tích đa thức thành nhân tử x3+6x2+9x
Phân tích đa thức thành nhân tử:
a)10x2y-5xy2+15xyz
b)x3-x2-4x+4
c)x3-6x2+9x
\(a,=5xy\left(2x-y+3z\right)\\ b,=x^2\left(x-1\right)-4\left(x-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\\ c,=x\left(x^2-6x+9\right)=x\left(x-3\right)^2\)
Phân tích các đa thức sau thành nhân tử:
b ) x 3 - 6 x 2 + 12 x – 8
b) x3 - 6x2 + 12x – 8 = x3 - 3.x2.2 + 3.x.22 - 23 = (x – 2)3
phân tích đa thức thành nhân tử
a) 1+6x-6x2-x3
b) x3-4x2+8x-8
c) x3+2x2+2x+1
d) 8x3-12x2+6x-1
a) Ta có: \(1+6x-6x^2-x^3\)
\(=\left(1-x\right)\left(x^2+x+1\right)+6x\left(1-x\right)\)
\(=\left(1-x\right)\left(x^2+7x+1\right)\)
b:Ta có: \(x^3-4x^2+8x-8\)
\(=\left(x-2\right)\left(x^2+2x+4\right)-4x\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-2x+4\right)\)
c: Ta có: \(x^3+2x^2+2x+1\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
d: Ta có: \(8x^3-12x^2+6x-1\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\)
\(=\left(2x-1\right)^3\)
Phân tích các đa thức sau thành nhân tử:
1) x3 - 7x + 6
2) x3 - 9x2 + 6x + 16
3) x3 - 6x2 - x + 30
4) 2x3 - x2 + 5x + 3
5) 27x3 - 27x2 + 18x - 4
`1)x^3-7x+6`
`=x^3-x-6x+6`
`=x(x-1)(x+1)-6(x-1)`
`=(x-1)(x^2+x-6)`
`=(x-1)(x^2-2x+3x-6)`
`=(x-1)[x(x-2)+3(x-2)]`
`=(x-1)(x-2)(x+3)`
`2)x^3-9x^2+6x+16`
`=x^3-2x^2-7x^2+14x-8x+16`
`=x^2(x-2)-7x(x-2)-8(x-2)`
`=(x-2)(x^2-7x-8)`
`=(x-2)(x^2-8x+x-8)`
`=(x-2)[x(x-8)+x-8]`
`=(x-2)(x-8)(x+1)`
`3)x^3-6x^2-x+30`
`=x^3+2x^2-8x^2-16x+15x+30`
`=x^2(x+2)-8x(x+2)+15(x+2)`
`=(x+2)(x^2-8x+15)`
`=(x+2)(x^2-3x-5x+15)`
`=(x+2)[x(x-3)-5(x-3)]`
`=(x+2)(x-3)(x-5)`
`4)2x^3-x^2+5x+3`
`=2x^3+x^2-2x^2-x+6x+3`
`=x^2(2x+1)-x(2x+1)+3(2x+1)`
`=(2x+1)(x^2-x+3)`
`5)27x^3-27x^2+18x-4`
`=27x^3-9x^2-18x^2+6x+12x-4`
`=9x^2(3x-1)-6x(3x-1)+4(3x-1)`
`=(3x-1)(9x^2-6x+4)`
1) Ta có: \(x^3-7x+6\)
\(=x^3-x-6x+6\)
\(=x\left(x^2-1\right)-6\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x-6\right)\)
\(=\left(x-1\right)\left(x+3\right)\left(x-2\right)\)
2) Ta có: \(x^3-9x^2+6x+16\)
\(=x^3-2x^2-7x^2+14x-8x+16\)
\(=x^2\left(x-2\right)-7x\left(x-2\right)-8\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-7x-8\right)\)
\(=\left(x-2\right)\left(x-8\right)\left(x+1\right)\)
3) Ta có: \(x^3-6x^2-x+30\)
\(=x^3+2x^2-8x^2-16x+15x+30\)
\(=x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-8x+15\right)\)
\(=\left(x+2\right)\left(x-3\right)\left(x-5\right)\)
4) Ta có: \(2x^3-x^2+5x+3\)
\(=2x^3+x^2-2x^2-x+6x+3\)
\(=x^2\left(2x+1\right)-x\left(2x+1\right)+6\left(2x+1\right)\)
\(=\left(2x+1\right)\left(x^2-x+6\right)\)
5) Ta có: \(27x^3-27x^2+18x-4\)
\(=27x^3-9x^2-18x^2+6x+12x-4\)
\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)
\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)
Phân tích đa thức thành nhân tử: x 3 – 9 x + 2 x 2 y + x y 2
A. x. (x - y + 3).(x + y - 3)
B. x. (x + y + 3).(x + y - 3)
C. x. (x - y + 3).(x - y - 1)
D. x. (x + y + 1).(x - y - 3)
phân tích đa thức sau thành nhân tử: x3+2x2y+xy2-9x
\(=x\left(x^2+2xy+y^2-9\right)\)
=x(x+y-3)(x+y+3)
\(x^3+2x^2y+xy^2-9x=x\left(x^2+2xy+y^2-9\right)=x\left[\left(x+y\right)^2-3^2\right]=x\left(x+y-3\right)\left(x+y+3\right)\)
Phân tích đa thức sau thành nhân tử: x3 + 2x2y + xy2 – 9x
x3 + 2x2y + xy2 – 9x
(Có x là nhân tử chung)
= x(x2 + 2xy + y2 – 9)
(Có x2 + 2xy + y2 là hằng đẳng thức)
= x[(x2 + 2xy + y2) – 9]
= x[(x + y)2 – 32]
(Xuất hiện hằng đẳng thức (3)]
= x(x + y – 3)(x + y + 3)
Phân tích các đa thức sau thành nhân tử: 45 + x 3 - 5 x 2 - 9 x
45 + x 3 - 5 x 2 - 9 x = x 3 - 5 x 2 - 9 x - 45 = x 2 x - 5 - 9 x - 5 = x - 5 x 2 - 9 = x - 5 x - 3 x + 3
Phân tích các đa thức sau thành nhân tử:
a/ y2 - 2y b/ 3x4 – 6x3 + 3x2
c/ 27x2 ( y – 1) – 9x3 ( 1 - y) d/y3 – 2y2 + y
e/ x3 + 6x2 + 9x f/ x3 – 2x2y + xy2
g/ x( 2- x) – x + 2 h/ 3x ( x – 1) + 6( 1 – x)
\(a,=y\left(y-2\right)\\ b,=3x\left(x^2-2x+1\right)=3x\left(x-1\right)^2\\ c,=\left(y-1\right)\left(27x^2+9x^3\right)=9x^2\left(x+3\right)\left(y-1\right)\\ d,=y\left(y^2-2y+1\right)=y\left(y-1\right)^2\\ e,=x\left(x^2+6x+9\right)=x\left(x+3\right)^2\\ f,=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\\ g,=\left(2-x\right)\left(x+1\right)\\ h,=\left(x-1\right)\left(3x-6\right)=3\left(x-1\right)\left(x-2\right)\)
a: =y(y-2)
b: \(=3x^2\left(x^2-2x+1\right)=3x^2\left(x-1\right)^2\)
d: \(=y\left(y^2-2y+1\right)=y\left(y-1\right)^2\)
Bài 1: Phân tích các đa thức sau thành nhân tử
HD: Dùng phương pháp đặt nhân tử chung phối hợp dùng hằng đẳng thức số 1, 2
1) x3 – 2x – x 2) 6x2 + 12xy + 6y2
3) 2y3 + 8y3 + 8y 4) 5x2 – 10xy + 5y2
Bài 2: Phân tích các đa thức sau thành nhân tử
HD: Dùng pp đặt nhân tử chung phối hợp dùng hằng đẳng thức số 3, 6, 7
1) x3 – 64x 2) 8x2y – 18y 3) 24x3 – 3
Bài 3: Phân tích các đa thức sau thành nhân tử
HD: Dùng phương pháp nhóm hạng tử phối hợp dùng hằng đẳng thức
1) 5x2 + 10x + 5 – 5y2 2) 3x3 – 6x2 + 3x – 12xy2
3) a3b – ab3 + a2 + 2ab + b2 4) 2x3 – 2xy2 – 8x2 + 8xy
Giup mik với mik cần gấp lắm!
Bài 1:
\(1,Sửa:x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\\ 2,=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\\ 3,=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\\ 4,=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
\(1,=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\\ 2,=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\\ 3,=3\left(x^3-1\right)=3\left(x-1\right)\left(x^2+x+1\right)\)
Bài 3:
\(a,=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y^2\right]=5\left(x-y+1\right)\left(x+y+1\right)\\ b,=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-4y^2\right]\\ =3x\left(x-2y-1\right)\left(x+2y-1\right)\\ c,=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2\\ =\left(a+b\right)\left(a^2b-ab^2+a+b\right)\\ d,=2x\left(x^2-y^2-4x+4\right)=2x\left[\left(x-2\right)^2-y^2\right]\\ =2x\left(x-y-2\right)\left(x+y-2\right)\)
Bài 1;
1) \(x^3-2x-x=x\left(x^2-2x-1\right)\)
2) \(6x^2+12xy+6y^2=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\)
3) \(2y^3+8y^3+8y=10y^3+8y=2y\left(5y^2+4\right)\)
4) \(5x^2-10xy+5y^2=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
1) \(x^3-64x=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\)
2) \(8x^2y-18y=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\)
3) \(24x^3-3=3\left(8x^3-1\right)=3\left(2x-1\right)\left(4x^2+2x+1\right)\)
Bài 3:
1) \(5x^2+10x+5-5y^2=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y\right]=5\left(x-y+1\right)\left(x+y+1\right)\)
2) \(3x^3-6x^2+3x-12xy^2=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=3x\left(x-2y-1\right)\left(x+2y-1\right)\)
3) \(a^3b-ab^3+a^2+2ab+b^2=ab\left(a^2-b^2\right)+\left(a+b\right)^2=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2=\left(a+b\right)\left(a^2b-ab^2+a+b\right)\)
4) \(2x^3-2xy^2-8x^2+8xy=2x\left(x^2-y^2-4x+4y\right)=2x\left[\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\right]=2x\left(x-y\right)\left(x+y-4\right)\)