Cho A = 5 + 52 + 53 + .... + 543 + 544 + 545 .
a/ Tính tổng A ;
b/ Chứng minh A chia hết cho 155
1 Thu gọn biểu thức
D = 5 + 52 + 53 + .... +5100
2 So sánh
a) 544 và 2112
b) 339 và 1121
c) 20160 và 39845
Bài 1:
D = 5 + 52 + 53+...+ 5100
5.D = 52 + 53+...+5 100 + 5101
5D - D = 5101 - 5
4D = 5101 - 5
D = \(\dfrac{5^{101}-5}{4}\)
Bài 2:
So sánh
a, 544 = (2.33)4 = 24.312
2112 = (3.7)12 = 312.712
Vì 24 < 712 nên 544 < 2112
b, 339 và 1121
339 = (313)3
1121 = (117)3
313 = (32)6.3 = 96.3 < 97 < 117
Vậy 339 < 1121
1 Thu gọn biểu thức
D = 5 + 52 + 53 + ... + 5100
2 So sánh
a) 544 và 2112
b) 339 và 1121
c) 20160 và 39845
1) \(D=5+5^2+5^3+...+5^{100}\)
\(\Rightarrow D+1=1+5+5^2+5^3+...+5^{100}\)
\(\Rightarrow D+1=\dfrac{5^{100+1}-1}{5-1}\)
\(\Rightarrow D+1=\dfrac{5^{101}-1}{4}\)
\(\Rightarrow D=\dfrac{5^{101}-1}{4}-1=\dfrac{5^{101}-5}{4}=\dfrac{5\left(5^{100}-1\right)}{4}\)
2)
a) \(21^{12}=\left(21^3\right)^4=9261^4>54^4\Rightarrow54^4< 21^{12}\)
b) \(3^{39}< 3^{40}=\left(3^2\right)^{20}=9^{20}< 11^{20}< 11^{21}\)
\(\Rightarrow3^{39}< 11^{21}\)
c) \(201^{60}=\left(201^4\right)^{15}=\text{1632240801}^{15}\)
\(398^{45}=\left(398^3\right)^{15}=\text{63044792}^{15}< \text{1632240801}^{15}\)
\(201^{60}>398^{45}\)
Tính tổng: A = 5 + 5 2 + 5 3 + ... + 5 96
Tính tổng A=5+52+53+...+52023
A = 5 + 5² + 5³ + ... + 5²⁰²³
⇒ 5A = 5² + 5³ + 5⁴ + ... + 5²⁰²⁴
⇒ 4A = 5A - A
= (5² + 5³ + 5⁴ + ... + 5²⁰²⁴) - (5 + 5² + 5³ + ... + 5²⁰²³)
= 5²⁰²⁴ - 5
⇒ A = (5²⁰²⁴ - 5)/4
A = 5 + 5² + 5³ + ... + 5²⁰²³
⇒ 5A = 5² + 5³ + 5⁴ + ... + 5²⁰²⁴
⇒ 4A = 5A - A
= (5² + 5³ + 5⁴ + ... + 5²⁰²⁴) - (5 + 5² + 5³ + ... + 5²⁰²³)
= 5²⁰²⁴ - 5
⇒ A = (5²⁰²⁴ - 5)/4
Cho tổng A: 5+52+53+......+512
Chứng minh A chia hết cho (2.3.5)
\(A=5\left(1+5\right)+...+5^{11}\left(1+5\right)\)
\(=6\cdot\left(5+...+5^{11}\right)⋮30\)
Tính tổng sau:
A=2+22+23+...+219+220
B=5+52+53+...+550
C=1+3+32+33+...+3100
\(A=2+2^2+...+2^{20}\)
\(2A=2^2+2^3+...+2^{21}\)
\(2A-A=2^2+2^3+...+2^{21}-2-2^2-...-2^{20}\)
\(A=2^{21}-2\)
___________
\(B=5+5^2+...+5^{50}\)
\(5B=5^2+5^3+...+5^{51}\)
\(5B-B=5^2+5^3+...+5^{51}-5-5^2-...-5^{50}\)
\(4B=5^{51}-5\)
\(B=\dfrac{5^{51}-5}{4}\)
___________
\(C=1+3+3^2+...+3^{100}\)
\(3C=3+3^2+...+3^{101}\)
\(3C-C=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}\)
\(2C=3^{101}-1\)
\(C=\dfrac{3^{101}-1}{2}\)
2A= 2(2+22+23+...+219+220)
2A= 22+23+24+...+220+221
2A-A=(22+23+24+...+220+221)-(2+22+23+...+219+220)
A=221-2
Vậy A=221-2
Làm tương tự nhee
cho A=1+5+52+53+...+52022,B=52023phần 8.Tính 2B-A
5A=5+5^2+...+5^2023
=>4A=5^2023-1
=>\(A=\dfrac{5^{2023}-1}{4}\)
\(2B-A=\dfrac{5^{2023}}{4}-\dfrac{5^{2023}-1}{4}=\dfrac{1}{4}\)
Ta có: A = 5 + 52 + 53 +....+ 5100
chia hết
Ta có: A = 5 + 52 + 53 +....+ 5100
chia hết
Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip
a) Cho A=1+5+52+53+...+52021
Chứng minh A ⋮ 31
b) chứng minh rằng tổng của 4 số tự nhiên không chia hết cho 4
Cho A= 550-548+546-544+...+56-54+52-1
a) Tính A
b) Tìm số tự nhiên n biết 26.A+1=511
c) Tìm số dư trong phép chia A cho 100
a, Ta có : \(5^2A=5^{52}-5^{50}+...+5^4-5^2\)
\(\Rightarrow25A+A=5^{52}-1\)\(\Rightarrow A=\dfrac{5^{52}-1}{26}\)
b, Không thấy n :vvv
c, Ta có : \(A=24\left(5^{48}+...+1\right)\)
\(=4.6.\left(5^{48}+...+1\right)\)
\(=4.6\left(5^{48}+...\right)+24\)
\(=4.5^2\left(5^{46}.6+...\right)+24=100\left(5^{46}.6+...\right)+24\)
Vậy số dư khi chia A cho 100 là 24 .
a) Ta có: \(A=5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\)
\(\Leftrightarrow25A=5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\)
\(\Leftrightarrow26A=5^{52}-1\)
\(\Leftrightarrow A=\dfrac{5^{52}-1}{26}\)