Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Ngọc Hà My
Xem chi tiết
Sát thủ
Xem chi tiết
ITACHY
Xem chi tiết
Akai Haruma
6 tháng 10 2019 lúc 12:50

Lời giải:

$BH$ cắt $AC$ tại $M$. Do $H$ là trực tâm nên $AM\perp AC$
Ta có:
\(\widehat{HBD}=90^0-\widehat{BHD}=90^0-\widehat{MHA}=\widehat{MAH}=\widehat{CAD}\)

Xét tam giác $BHD$ và $ACD$ có:

\(\widehat{HBD}=\widehat{CAD}\) (cmt)

\(\widehat{BDH}=\widehat{ADC}(=90^0)\)

\(\Rightarrow \triangle BHD\sim \triangle ACD(g.g)\Rightarrow \frac{HD}{BD}=\frac{CD}{AD}\)

\(\Leftrightarrow \frac{AD}{2BD}=\frac{CD}{AD}\) (do $H$ là trung điểm cùa $AD$ nên $2HD=AD$)

\(\Leftrightarrow \frac{AD}{BD}.\frac{AD}{CD}=2\)

\(\Leftrightarrow \tan B.\tan C=2\) (đpcm)

Akai Haruma
6 tháng 10 2019 lúc 12:53

Hình vẽ:

Violympic toán 9

Cát Nguyễn
Xem chi tiết
Akai Haruma
6 tháng 10 2019 lúc 12:53

Bạn tham khảo lời giải tại link sau:

Câu hỏi của ITACHY - Toán lớp 9 | Học trực tuyến

Lê Anh Hòa
Xem chi tiết
Tuyet Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 8 2023 lúc 22:05

a: O là giao điểm của 3 đường trung trực của ΔABC

=>O là tâm đường tròn ngoại tiếp ΔABC

=>AM là đường kính của (O)

Xét (O) có

ΔABM nội tiếp đường tròn

AM là đường kính

=>ΔABM vuông tại B

=>BM vuông góc AB

=>BM//CH

Xét (O) có

ΔACM nội tiếp

AM là đường kính

=>ΔAMC vuông tại C

=>AC vuông góc CM

=>CM//BH

Xét tứ giác BHCM có

BH//CM

BM//CH

=>BHCM là hình bình hành

=>BC cắt HM tại trung điểm của mỗi đường

=>I là trung điểm của HM

b: Xét ΔMAH có

O,I lần lượt là trung điểm của MA,MH

=>OI là đường trung bình

=>OI//AH và OI=1/2AH

=>AH=2OI

LÊ ĐÌNH HẢI
Xem chi tiết
Minh Phương
31 tháng 5 2023 lúc 20:46

Ta cần chứng minh H là trực tâm của tam giác ASM. Với mục đích này, ta sẽ sử dụng tính chất của hình chữ nhật.

Vì M là trung điểm BC, ta có BM = MC. Do đó, SM là đường trung trực của BC.

Vì EF ⊥ BE và CF, nên EF song song với đường BC (vì BE // CF). Do đó, S nằm trên đường trung trực của BC.

Vì H là giao điểm của AD và BE, ta có AH  ⊥ BC và BH ⊥ AC. Do đó, AH // SM và BH // SM.

Khi đó, ta suy ra được rằng tứ giác ABSH là hình chữ nhật (do có 2 cặp cạnh đối nhau là song song và bằng nhau).

Do AS là đường chéo của hình chữ nhật ABSH, nên H là trực tâm của tam giác ASM.

Vậy, H là trực tâm của tam giác ASM. 

gin đẹp trai
Xem chi tiết
gin đẹp trai
16 tháng 7 2023 lúc 21:25

ai giúp mình với làm ơn

Nguyễn Lê Phước Thịnh
23 tháng 7 2023 lúc 23:56

a: AH<AD

=>H nằm giữa B và D

b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

BA=BD

=>ΔBAE=ΔBDE

=>EA=ED 

mà BA=BD

nên BE là trung trực của AD

c: góc CAD+góc BAD=90 độ

góc HAD+góc BDA=90 độ

mà góc BAD=góc BDA

nên góc CAD=góc HAD

=>AD là phân giác của góc HAC