Cho tam giác ABC, AD là đường cao, trực tâm H là trung điểm AD.C/m: tanB.tanC=2
Cho tam giác ABC có trực tâm H là trung điểm của đường cao AD. Chứng minh rằng tanB.tanC=2?
Cho tam giác ABC có 3 góc nhọn,vẽ đường cao AD và BE. Gọi H là trực tâm của tam giác ABC.
a,c/m: TanB.TanC=AD/HD
b,c/m:DH.AD\(\le\)\(\frac{BC^2}{4}\)
Cho tam giác ABC, trực tâm H là trung điểm của đường cao AD. CMR: tanB.tanC=2
Lời giải:
$BH$ cắt $AC$ tại $M$. Do $H$ là trực tâm nên $AM\perp AC$
Ta có:
\(\widehat{HBD}=90^0-\widehat{BHD}=90^0-\widehat{MHA}=\widehat{MAH}=\widehat{CAD}\)
Xét tam giác $BHD$ và $ACD$ có:
\(\widehat{HBD}=\widehat{CAD}\) (cmt)
\(\widehat{BDH}=\widehat{ADC}(=90^0)\)
\(\Rightarrow \triangle BHD\sim \triangle ACD(g.g)\Rightarrow \frac{HD}{BD}=\frac{CD}{AD}\)
\(\Leftrightarrow \frac{AD}{2BD}=\frac{CD}{AD}\) (do $H$ là trung điểm cùa $AD$ nên $2HD=AD$)
\(\Leftrightarrow \frac{AD}{BD}.\frac{AD}{CD}=2\)
\(\Leftrightarrow \tan B.\tan C=2\) (đpcm)
Cho tam giác ABC, trực tâm H là trung điểm của đường cao AD. CMR: tanB.tanC=2
Bạn tham khảo lời giải tại link sau:
Cho tam giác ABC có ba góc nhọn.Vẽ đường cao AD và BE.Gọi H là trực tâm và G là trọng tâm của tam giác ABC.
a,CMR:tanB.tanC=AD/HD
b,CMR: nếu HG//BC <=> tanB.tanC=3
GIúp mình với
Cho tam giác ABC nhọn, các đường cao AD, BE cắt nhau tại H. Gọi O là giao điểm 3 đường trung trực của tam giác ABC. Trên tia đối của OA lấy điểm M sao cho O là trung điểm của AM. Gọi I là trung điểm của BC và G là trọng tâm của tam giác ABC
a. C/m: tứ giác BHCM là hình bình hàng, từ đó suy ra: I là trung điểm của HM
b. C/m: AH=2OI
c. C/m: 3 điểm H,G,O thẳng hàng
a: O là giao điểm của 3 đường trung trực của ΔABC
=>O là tâm đường tròn ngoại tiếp ΔABC
=>AM là đường kính của (O)
Xét (O) có
ΔABM nội tiếp đường tròn
AM là đường kính
=>ΔABM vuông tại B
=>BM vuông góc AB
=>BM//CH
Xét (O) có
ΔACM nội tiếp
AM là đường kính
=>ΔAMC vuông tại C
=>AC vuông góc CM
=>CM//BH
Xét tứ giác BHCM có
BH//CM
BM//CH
=>BHCM là hình bình hành
=>BC cắt HM tại trung điểm của mỗi đường
=>I là trung điểm của HM
b: Xét ΔMAH có
O,I lần lượt là trung điểm của MA,MH
=>OI là đường trung bình
=>OI//AH và OI=1/2AH
=>AH=2OI
Cho tam giác ABC nhọn. 3 đường cao AD, BE, CF cắt nhau tại H. M là trung điểm BC. S là giao điểm của EF và BC. Chứng minh rằng H là trực tâm của tam giác ASM.
Ta cần chứng minh H là trực tâm của tam giác ASM. Với mục đích này, ta sẽ sử dụng tính chất của hình chữ nhật.
Vì M là trung điểm BC, ta có BM = MC. Do đó, SM là đường trung trực của BC.
Vì EF ⊥ BE và CF, nên EF song song với đường BC (vì BE // CF). Do đó, S nằm trên đường trung trực của BC.
Vì H là giao điểm của AD và BE, ta có AH ⊥ BC và BH ⊥ AC. Do đó, AH // SM và BH // SM.
Khi đó, ta suy ra được rằng tứ giác ABSH là hình chữ nhật (do có 2 cặp cạnh đối nhau là song song và bằng nhau).
Do AS là đường chéo của hình chữ nhật ABSH, nên H là trực tâm của tam giác ASM.
Vậy, H là trực tâm của tam giác ASM.
Cho tam giác ABC vuông tại A, đường cao AH. Trên tia BC lấy điểm D sao
choBD BA . Đường vuông góc với BC tại D cắt AC tại E. Chứng minh rằng:
a) Điểm H nằm giữa B; D.
Page 15
b) BE là đường trung trực của đoạn AD.
c) Tia AD là tia phân giác của góc HAC.
d) HD DC
a: AH<AD
=>H nằm giữa B và D
b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
BA=BD
=>ΔBAE=ΔBDE
=>EA=ED
mà BA=BD
nên BE là trung trực của AD
c: góc CAD+góc BAD=90 độ
góc HAD+góc BDA=90 độ
mà góc BAD=góc BDA
nên góc CAD=góc HAD
=>AD là phân giác của góc HAC