Bạn tham khảo lời giải tại link sau:
Bạn tham khảo lời giải tại link sau:
Cho tam giác ABC, trực tâm H là trung điểm của đường cao AD. CMR: tanB.tanC=2
Cho tam giác nhọn ABC có AB>AC. Gọi M là trung điểm của BC; H là trực tâm;AD,BE,CF là các đường cao của tam giác ABC. Kí hiệu (C1) và (C2) lần lượt là đường tròn ngoại tiếp tam giác A EF và DKE, với K là giao điểm của EF và BC. CMR: ME là tiếp tuyến chung của (C1) và (C2) Giúp gấp.
Cho tam giác ABC nhọn nội tiếp (O;R). Có các đường cao AD,BE,CF, H là trực tâm tam giác ABC. Kẻ đường kính AK.
c) Khi BC và (O) cố định , BC=a. Tìm vị trí của A để P= DE+EF+DF lớn nhất, tìm GTLN theo a và R
1) Cho ΔABC trực tâm H là trung điểm đường cao AD
a) CMR: tanB.tanC = 2
b) Trung tuyến BM ⊥ trung tuyến CN tại G. CMR: cot B + cot C ≥ 2/3
2) Cho ΔABC , Â tù kẻ AH ⊥ BC, BH = 10cm , HC = 24cm
Cho góc ABC = 45° . Tính tỉ số lượng giác góc ACB
Cho ΔABC, Â = 90° , BC = 10cm , sin B = 1/2 . Tính tỉ số lượng giác góc C ?
CMR : SΔ = Cạnh.Cạnh.sin góc kẹp giữa
Cho tam giác ABC , trực tâm H là trung điểm của đường cao AD . Chứng minh rằng : tgB . tgC = 2
Cho tam giác ABC nhọn nội tiếp (O) đường cao AD, BE cắt nhau tại H, AD cắt đường tròn tại A, ( A ≠ A, )
a) chứng minh H đối xứng A, qua BC
b) gọi K là điểm đối xứng của A qua O. Chứng minh BHCK là hình bình hành
c) Gọi G là trọng tâm tam giác ABC. chứng minh 3 điểm H,G,O thẳng hàng
Cho tam giác ABC có 3 góc ngọn. Hai đường cao của tam giác ABC là AD,BE cắt nhau tại H (D thuộc BC; E thuộc AC).
a) Chứng minh: CDHE là tứ giác nội tiếp một đường tròn.
b) Chứng minh: HA.HD = HB.HE.
c) Gọi điểm I là tâm đường tròn ngoại tiếp tứ giác CDHE. Chứng minh IE là tiếp tuyến của đường tròn đường kính AB.
( Làm mỗi câu c hộ mình thoi ạ)
Cho tam giác ABC, AQ, KB, CI là 3 đường cao, H là trực tâm.
a) C/m: A,B,Q,K thuộc một đường tròn. Xác định tâm của đường tròn
b) C/m: A,I,H,K thuộc một đường tròn. Xác định tâm của đường tròn
Cho tam giác ABC nội tiếp (O), H là trực tâm, AH cắt (O) tại E. Kẻ đường kính AOF. Chứng minh:
a) Tứ giác BCEF là hình thang cân
b) \(\widehat{BAE}=\widehat{CAF}\)
c) Gọi I là trung điểm của BC. Chứng minh: H, I, F thẳng hàng