cho đường tròn (O;R) và dây cung BC cố định (BC<2R) . Gọi A là điểm di động trên cung lớn BC sao cho ABC là tam giác có 3 góc nhọn. Các đường cao AD,BE,CF của tam giác cắt nhau tại H . a) CM:tứ giác AEHF nội tiếp đường tròn; xác định tâm I của đường tròn đó.b)CMR:khi điểm A di động thì tiếp tuyến tại E của đường tròn tâm (I) luôn đi qua 1 điểm cố định.c)Xác định vị trí của điểm A để tam giác AEF có diện tích lớn nhất ?
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O bán kính R. AD, BE là các đường cao của tam giác ABC. Các tia AD, BE lần lượt cắt (O) tại các điểm thứ hai là M và N. Chứng minh:
a) MN song song với DE
b) Cho (O) và dây AB cố định, điểm C di chuyển trên cung lớn AB. Chứng minh độ dài đường kính đường tròn ngoại tiếp tam giác CDE không đổi
Cho tam giác nhọn ABC có AB>AC. Gọi M là trung điểm của BC; H là trực tâm;AD,BE,CF là các đường cao của tam giác ABC. Kí hiệu (C1) và (C2) lần lượt là đường tròn ngoại tiếp tam giác A EF và DKE, với K là giao điểm của EF và BC. CMR: ME là tiếp tuyến chung của (C1) và (C2) Giúp gấp.
Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R). Các đường cao AD, BE, CF cắt nhau tại H. Các đường thẳng BE và CF cắt đường tròn (O;R) tại Q và K. Gọi I là trung điểm BC, chứng minh I thuộc đường trong ngoại tiếp tam giác DEF
Cho tam giác ABC có ba góc đều nhọn nội tiếp trong đường tròn (O;R) Các đường cao AD, BE, CF đồng quy
tại H, r là bán kính đường tròn nội tiếp trong tam giác ABC
a) Chúng minh OA vuông góc EF
b) Chứng minh rằng H là tâm đường tròn nội tiếp tam giác DEF
c) Chứng minh rằng nếu AD+BE+CF =9r thì tam giác ABC là tam giác đều
d)Cho AB=\(R\sqrt{2}\),AC=\(R\sqrt{3}\) thì tam giác DEF là hình gì?Vì sao?
Cho đường tròn (O; R) có dây BC cố định không đi qua tâm. Trên cung lớn BC lấy điểm A sao cho tam giác ABC nhọn. Đường cao BM và CN của tam giác ABC cắt nhau tại H.
a) Chứng minh rằng tứ giác ANHM nội tiếp
b) Chứng minh rằng : BN.BA + CM. CA = BC2
Bài 1: Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn (O;R); các đường cao BE,CF cắt nhau tại H. Đường thẳng EF cắt đường tròn ngoại tiếp tam giác ABC tại M,N ( M nằm trên cung nhỏ AB)
1) Chứng minh tam giác AMN can
2) Giả sử AH cắt BC tại D. Chứng minh rằng: \(AM^2=AH.AD\)
3) Gọi P là điểm đối xứng với A qua O. Đường thẳng PN cắt đường thẳng BC tại K. Chứng minh rằng AK vuông góc với HN.
Bài 2: Cho đường tròn tâm O đường kính AB và P là một điểm di động trên đường tròn ( P khác A) sao cho \(PA\le PB\).Trên tia đối PB lấy điểm Q sao cho PQ=PA, dựng hình vuông APQR. Tia PR cắt đường tròn đã cho ở điểm C ( C khác P)
1) Chứng minh C là tâm đường tròn ngoại tiếp tam giác AQB
2) Gọi K là tâm đường tròn nội tiếp tam giác APB, Chứng minh K thuộc đường tròn ngoại tiếp tam giác AQB
3) Kẻ đường cao PH của tam giác APB, gọi \(R_1,R_2,R_3\)lần lượt là bán kính các đường tròn ngoại tiếp tam giác APB, tam giác APH và tam giác BPH.Tìm vị trí điểm P để tổng \(R_1+R_2+R_3\)đạt giá trị lớn nhất
Cho đường tròn tâm O và dây cung BC. Điểm A di chuyển trên cung lớn BC sao cho tam giác ABC có 3 góc nhọn. Đường cao BE, CF của tam giác ABC cắt nhau tại H và cắt đường tròn theo thứ tự tại M và N. Cho cung BC nhỏ có số đo bằng 120 độ. Tính tỉ số diện tích của tam giác AEF và tứ giác BCEF
Cho tam giác ABC nhọn nội tiếp (O;R) có 2 đường cao AE và BF cắt nhau tại H
a) t/g CFHE nội tiếp
b) CF.FA= BF.FC
c) kẻ đường kính CK, I là trung điểm BC. C/m I,H,K thẳng hàng