Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mai Tiến Đỗ

Bài 1: Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn (O;R); các đường cao BE,CF cắt nhau tại H. Đường thẳng EF cắt đường tròn ngoại tiếp tam giác ABC tại M,N ( M nằm trên cung nhỏ AB)

1) Chứng minh tam giác AMN can

2) Giả sử AH cắt BC tại D. Chứng minh rằng: \(AM^2=AH.AD\)

3) Gọi P là điểm đối xứng với A qua O. Đường thẳng PN cắt đường thẳng BC tại K. Chứng minh rằng AK vuông góc với HN.

Bài 2: Cho đường tròn tâm O đường kính AB và P là một điểm di động trên đường tròn ( P khác A) sao cho \(PA\le PB\).Trên tia đối PB lấy điểm Q sao cho PQ=PA, dựng hình vuông APQR. Tia PR cắt đường tròn đã cho ở điểm C ( C khác P)

1) Chứng minh C là tâm đường tròn ngoại tiếp tam giác AQB

2) Gọi K là tâm đường tròn nội tiếp tam giác APB, Chứng minh K thuộc đường tròn ngoại tiếp tam giác AQB

3) Kẻ đường cao PH của tam giác APB, gọi \(R_1,R_2,R_3\)lần lượt là bán kính các đường tròn ngoại tiếp tam giác APB, tam giác APH và tam giác BPH.Tìm vị trí điểm P để tổng \(R_1+R_2+R_3\)đạt giá trị lớn nhất


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
ngọc linh
Xem chi tiết
Thiên Thương Lãnh Chu
Xem chi tiết
Big City Boy
Xem chi tiết
Thiên Vũ Ngọc
Xem chi tiết
Trần Việt Khoa
Xem chi tiết
Hoàng Việt Hà
Xem chi tiết
Thành
Xem chi tiết
ngọc linh
Xem chi tiết