Cho tam giác ABC nhọn, các đường cao AD, BE cắt nhau tại H. Gọi O là giao điểm 3 đường trung trực của tam giác ABC. Trên tia đối của OA lấy điểm M sao cho O là trung điểm của AM. Gọi I là trung điểm của BC và G là trọng tâm của tam giác ABC
a. C/m: tứ giác BHCM là hình bình hàng, từ đó suy ra: I là trung điểm của HM
b. C/m: AH=2OI
c. C/m: 3 điểm H,G,O thẳng hàng
a: O là giao điểm của 3 đường trung trực của ΔABC
=>O là tâm đường tròn ngoại tiếp ΔABC
=>AM là đường kính của (O)
Xét (O) có
ΔABM nội tiếp đường tròn
AM là đường kính
=>ΔABM vuông tại B
=>BM vuông góc AB
=>BM//CH
Xét (O) có
ΔACM nội tiếp
AM là đường kính
=>ΔAMC vuông tại C
=>AC vuông góc CM
=>CM//BH
Xét tứ giác BHCM có
BH//CM
BM//CH
=>BHCM là hình bình hành
=>BC cắt HM tại trung điểm của mỗi đường
=>I là trung điểm của HM
b: Xét ΔMAH có
O,I lần lượt là trung điểm của MA,MH
=>OI là đường trung bình
=>OI//AH và OI=1/2AH
=>AH=2OI