rút gọn các biểu thức
a. \(\sqrt{13a}.\sqrt{\frac{52}{a}}\) với a > 0
b. \(\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}\)
Rút gọn các biểu thức sau:
a. \(\sqrt{\dfrac{2a}{3}}.\sqrt{\dfrac{3a}{8}}\) với \(a\ge0;\)
b. \(\sqrt{13a}.\sqrt{\dfrac{52}{a}}\) với a > 0;
c. \(\sqrt{5a}.\sqrt{45a}-3a\) với \(a\ge0;\)
d. \(\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}.\)
a) ĐS: ; b) ĐS: 26; c) ĐS: 12a
d) - = - 6a + 9 -
= - 6a + 9 - = - 6a + 9 - 6│a│.
Khi a ≥ 0 thì │a│= a.
Do đó - = - 6a + 9 -6a = - 12a + 9.
Khi a < 0 thì │a│= a.
Do đó - = - 6a + 9 + 6a = + 9.
1. Rút gọn biểu thức:
a) \(\sqrt{27\cdot48\cdot\left(1-a\right)^2}\)với a>1
b) \(\frac{1}{a-b}\cdot\sqrt{a^4\left(a-b\right)^2}\) với a>b
c) \(\sqrt{\frac{2a}{3}}\cdot\sqrt{\frac{3a}{8}}\)với \(a\ge0\)
d) \(\sqrt{13a}\cdot\sqrt{\frac{52}{a}}\)với a>0
e) \(\left(3-a\right)^2-\sqrt{0.2}\cdot\sqrt{180a^2}\)
Bài 20 (trang 15 SGK Toán 9 Tập 1)
Rút gọn các biểu thức sau:
a) $\sqrt{\dfrac{2a}{3}}.\sqrt{\dfrac{3a}{8}}$ với $a\ge 0$ ; b) $\sqrt{13a}.\sqrt{\dfrac{52}{a}}$ với $a>0$ ;
c) $\sqrt{5a}.\sqrt{45a}-3a$ với $a\ge 0$ ; d) $(3-a)^2-\sqrt{0,2}.\sqrt{180a^2}$.
a, \(\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\left|\frac{a}{2}\right|=\frac{a}{2}\)
do \(a\ge0\)
b, \(\sqrt{13a}.\sqrt{\frac{52}{a}}=\sqrt{\frac{676a}{a}}=\sqrt{676}=26\)
c, \(\sqrt{5a}.\sqrt{45a}-3a=\sqrt{225a^2}-3a=\left|15a\right|-3a\)
\(=15a-3a=12a\)do a > 0
d, \(=\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}\)
\(=\left(3-a\right)^2-\sqrt{36a^2}=\left(3-a\right)^2-\left|6a\right|\)
Với \(a\ge0\Rightarrow\left(3-a\right)^2-6a=a^2-6a+9-6a=a^2-12a+9\)
Với \(a< 0\Rightarrow\left(3-a\right)^2+6a=a^2-6a+9+6a=a^2+9\)
a) Ta có:
b) Ta có:
c) Do a ≥ 0 nên bài toán luôn xác định. Ta có:
d) Ta có:
b) \(\sqrt{13a}\).\(\sqrt{\frac{52}{a}}\)=\(\sqrt{13a.\frac{52}{a}}\)=\(\sqrt{13.13.2.2}\)=13.2=26
3/ rút gọn biểu thức
A=\(\left(\sqrt{a}+2\right)\left(\sqrt{a}-3\right)-\left(\sqrt{a}+1\right)^2+\sqrt{9a}\)
\(A=a+2\sqrt{a}-3\sqrt{a}-6-a-2\sqrt{a}-1+3\sqrt{a}\)
\(A=-7\)
Ta có: \(A=\left(\sqrt{a}+2\right)\left(\sqrt{a}-3\right)-\left(\sqrt{a}+1\right)^2+\sqrt{9a}\)
\(=a-3\sqrt{a}+2\sqrt{a}-6-a-2\sqrt{a}-1+3\sqrt{a}\)
\(=-7\)
Rút gọn:
A = \(\sqrt{27.48\left(1-a^2\right)}\) với a > 1
B = \(\dfrac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}\) với a > b
C = \(\sqrt{5a}.\sqrt{45a}-3a\) với a ≥ 0
D = \(\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}\) với a tùy ý
a) Ta có: \(\sqrt{27\cdot48\left(1-a^2\right)}\)
\(=\sqrt{3^4\cdot4^2\cdot\left(1-a^2\right)}\)
\(=36\sqrt{1-a^2}\)
c) Ta có: \(\sqrt{5a}\cdot\sqrt{45a}-3a\)
\(=15a-3a=12a\)
b) Ta có: \(B=\dfrac{1}{a-b}\cdot\sqrt{a^4\cdot\left(a-b\right)^2}\)
\(=\dfrac{1}{a-b}\cdot a^2\cdot\left(a-b\right)\)
\(=a^2\)
d) Ta có: \(D=\left(3-a\right)^2-\sqrt{0.2}\cdot\sqrt{180a^2}\)
\(=a^2-6a+9-\sqrt{36a^2}\)
\(=a^2-6a+9-\left|6a\right|\)
\(=\left[{}\begin{matrix}a^2-6a+9-6a\left(a\ge0\right)\\a^2-6a+9+6a\left(a< 0\right)\end{matrix}\right.\)
\(=\left[{}\begin{matrix}a^2-12a+9\\a^2+9\end{matrix}\right.\)
\(A=9.4\left|1-a\right|=36\left(a-1\right)\) (a>1)
\(B=\dfrac{a^2\left|a-b\right|}{a-b}=\dfrac{a^2\left(a-b\right)}{a-b}=a^2\) (a>b)
\(C=5.3\left|a\right|-3a=15a-3a=12a\)
\(D=9-6a+a^2-6\left|a\right|=\left[{}\begin{matrix}a^2-12a+9\left(a\ge0\right)\\a^2+9\left(a< 0\right)\end{matrix}\right.\)
BT. RÚT GỌN
1.( với a >=3 )\(\sqrt{\frac{24}{3}}\times\sqrt{\frac{3a}{8}}\)
2. ( với a>3 )\(\sqrt{13a}\times\sqrt{\frac{52}{a}}\)
3. ( với a >=0 )\(\sqrt{5a}\times\sqrt{45a}-3a\)
4. ( 3-a )2-\(\sqrt{0,2}\times\sqrt{180a^2}\)
GIÚP MÌNH VỚI!!!!!!!HHHH
1) \(\sqrt{\frac{24}{3}}\cdot\sqrt{\frac{3a}{8}}=\sqrt{\frac{72a}{24}}=\sqrt{3a}\)
2) \(\sqrt{13a}\cdot\sqrt{\frac{52}{a}}=\sqrt{\frac{13a\cdot52}{a}}=\sqrt{676}=26\)
3) \(\sqrt{5a}\cdot\sqrt{45a}-3a=\sqrt{225a^2}-3a=15a-3a=12a\)
4) \(\left(3-a\right)^2-\sqrt{0,2}\cdot\sqrt{180a^2}=a^2-6a+9-\sqrt{36a^2}=a^2-6a+9-6a=a^2-12a+9\)
rút gọn các biểu thức sau:
a) \(\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)-\sqrt{x^3}\) với x lớn hơn hoặc = 0
b) \(\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\) với a lớn hơn hoặc = 0
a: \(\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)-\sqrt{x^3}\)
\(=1-x\sqrt{x}-x\sqrt{x}\)
\(=1-2x\sqrt{x}\)
b: \(\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\cdot\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\)
\(=\left(\dfrac{\left(1-\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\left(\dfrac{\left(1-\sqrt{a}\right)\cdot\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right)\)
\(=\left(\dfrac{1}{\sqrt{a}+1}\right)^2\cdot\left(a+\sqrt{a}+1+\sqrt{a}\right)\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)
1ruts gọn biểu thức : \(\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}\)
\(=\left(3-a\right)^2-\sqrt{0,2.180a^2}=9-6a+a^2-\sqrt{36a^2}=9-6a+a^2-6.lal\)
* Cho biểu thức
A= \(\left(1-\dfrac{1}{\sqrt{a}}\right).\left(\dfrac{1}{\sqrt{a}-1}+\dfrac{1}{\sqrt{a}+1}\right)\)(với x > 0, x ≠ 1)
a. Rút gọn biểu thức A
b. Tính giá trị của A khi a=3- \(2\sqrt{2}\)
a.
\(A=\left(1-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{1}{\sqrt{a}-1}+\dfrac{1}{\sqrt{a}+1}\right)\)
\(=\left(\dfrac{1-\sqrt{a}}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}-1+\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(=\dfrac{1-\sqrt{a}}{\sqrt{a}}.\dfrac{2\sqrt{a}}{a-1}=\dfrac{2\left(1-\sqrt{a}\right)}{a-1}=\dfrac{-2\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\dfrac{-2}{\sqrt{a}+1}\)
b.
\(a-2\sqrt{2}\rightarrow\sqrt{a}=\sqrt{2}-1\)
\(=2-2\sqrt{2}+1\)
=\(\left(\sqrt{2}-1\right)^2\)
\(\rightarrow A=\dfrac{-2}{\sqrt{2}-1+1}=\dfrac{-1}{\sqrt{2}}=\sqrt{2}\)
=>\(A=\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right).\left(\dfrac{\sqrt{a}+1+\sqrt{a}-1}{a-1}\right)\left(a>0,a\ne1\right)\)
\(=\dfrac{\sqrt{a}-1}{\sqrt{a}}.\dfrac{2\sqrt{a}}{a-1}=\dfrac{2}{\sqrt{a}+1}\)
b, \(a=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\) thế vào A
\(=>A=\dfrac{2}{\sqrt{\left(\sqrt{2}-1\right) ^2}+1}=\dfrac{2}{\sqrt{2}}\)