A=1/1.3+1/3.5+1/5.7+....+1/99.101
A = 1/1.3 - 1/3.5 - 1/5.7 - ... - 1/99.101
\(=\dfrac{1}{3}-\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{3}-\dfrac{1}{2}\cdot\dfrac{98}{303}=\dfrac{1}{3}-\dfrac{49}{303}=\dfrac{101-49}{303}=\dfrac{52}{303}\)
Bài 1: Tính tổng
a, 2\1.3+2\3.5+2\5.7+.......+2\99.101
b, 5\1.3+5\3.5+5\5.7+......+5\99.101
Bài 2: CMR phân số 2n+1\3n+2 là phân số tối giản
Bài 1:
Ta có:
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
\(=\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+...+\left(\frac{1}{99}-\frac{1}{101}\right)\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
b, Đặt \(A=\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)
\(\Rightarrow\frac{2}{5}A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
Từ (a) \(\Rightarrow\frac{2}{5}A=\frac{100}{101}\)
\(\Rightarrow A=\frac{100}{101}:\frac{2}{5}=\frac{100}{101}.\text{5/2}=\frac{250}{101}\)
Bài 2:
Đặt \(\left(2n+1;3n+2\right)=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d=1\)
\(\Rightarrow\left(2n+1;3n+2\right)=1\)
\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản
1. Giải
a, \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=2.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\right)\)
\(=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)
b, \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
\(=5.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{5.100}{2.101}=\frac{500}{202}=\frac{250}{101}\)
2. Giải
Gọi ước chung lớn nhất của 2n + 1 và 3n + 2 là d (d thuộc N*)
=> 2n + 1 \(⋮\)d ; 3n + 2 \(⋮\)d
=> 3(2n + 1) \(⋮\)d ; 2(3n + 2) \(⋮\)d
=> 6n + 3 \(⋮\)d , 6n + 4 \(⋮\)d
=> (6n + 4) - (6n + 3) \(⋮\)d
=> 1 \(⋮\)d
=> d = 1
Vậy \(\frac{2n+1}{3n+2}\)là phân số tối giản
1/1.3+1/3.5+1/5.7+.........+1/99.101
Đặt A=1/1*3+1/3*5+..+1/99*101
A=2/2*(1/1*3+1/3*5+...+1/99*101)
A=1/2*(2/1*3+2/3*5+..+2/99*101)
A=1/2*(1/1-1/3+1/3-1/5+...+1/99-1/100)
A=1/2*(1/1-1/100)
A=1/2*99/100
A=99/200
50/101 nha
Ai chưa có người yêu thì k và kết bạn với mình nhé
\(\frac{1}{1\cdot3}\)+ ... +\(\frac{1}{99\cdot101}\)
2 lần cái này bằng \(\frac{2}{1\cdot3}\)+\(\frac{2}{99\cdot101}\)
= 1/1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/100
=1-1/100
=> cái này bằng 1-1/100 chia 2 = 99/200
Nên nhớ, tao đang học lớp 6 đấy nhé.
1/1.3+1/3.5+1/5.7+...+1/99.101
A=1/1x3+1/3x5+1/5x7+...+1/99x101
gấp cả 2 vế lên 2 lần ta có:
Ax2=2/1x3+2/3x5+2/5x7+...+2/99x101
Ax2=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
Ax2=1-1/101
Ax2=100/101
A=100/101:2=50/101
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
Chúc bạn học tốt nha !!!
a) 1/1.3+1/3.5+1/5.7+.....+1/99.101
b) 7/1.3+7/3.5+7/5.7+.....+7/99.101
a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}-...-\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
b) \(\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+...+\frac{7}{99.101}\)
\(=7.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{7}{5.7}+...+\frac{7}{99.101}\right)\)
\(=7.\frac{1}{7}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{7}{7}\left(1-\frac{1}{101}\right)\)
\(=\frac{100}{101}\)
Tính 1/1.3+1/3.5+1/5.7+...1/99.101
1/1.3 + 1/3.5 + 1/5.7 + ... + 1/99.101
= 1/2.(2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101)
= 1/2.(1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/99 - 1/101)
= 1/2.(1 - 1/101)
= 1/2.100/101
= 50/101
\(\text{Đặt : }A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{99.101}\)
\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)
\(\Rightarrow2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Rightarrow2A=1-\frac{1}{101}\)
\(\Rightarrow A=\frac{100}{101}:2=\frac{50}{101}\)
Tính tổng
a. 1/1.2 + 1/2.3 + 1/3.4 + ...+ 1/2015.2016
b. 2/1.3 + 2/3.5 + 2/5.7 + ...+ 2/99.101
c. 5/1.3 + 5/3.5 + 5/5.7 + ...+ 5/99.101
d. 1/2 + 1/6 + 1/12 + 1/20 + ...+ 1/9900
bn nào trả lời nhanh mik tích, cảm ơn ạ
còn cần không bạn, mk làm cho
tiếp help A=\(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+.....+\(\dfrac{1}{99.101}\) help me :)
\(A=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)=\dfrac{1}{2}\left(\dfrac{100}{101}\right)=\dfrac{50}{101}\)
\(A=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)=\dfrac{1}{2}\cdot\dfrac{100}{101}=\dfrac{50}{101}\)
= 1/2 . (1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ...+ 1/99 + 1/101)
= 1/2 . (1/1 - 1/101)
= 1/2 . 100/101
= 50/101
\(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + \(\dfrac{1}{5.7}\) + .... + \(\dfrac{1}{99.101}\)
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{1}{2}.\dfrac{100}{101}=\dfrac{50}{101}\)