biết tanx =12/35 . hãy tính sinx và cotx
1. cho 180 độ < x < 250 độ. kết quả đúng là
A. sinx>0, cosx>0
B. sinx<0, cosx<0
C. sinx>0, cosx<0
D. sinx<0, cosx>0
2. cho \(\dfrac{3\pi}{4}\) <x< \(\dfrac{3\pi}{2}\) kết quả đúng là
A. tanx>0, cotx>0
B. tanx<0, cotx<0
C. tanx>0, cotx<0
D. tanx<0, cotx>0
3.
cho 2\(\pi\) < x <\(\dfrac{5\pi}{2}\) kết quả đúng là
A. tanx>0, cotx>0
B. tanx<0, cotx<0
C. tanx>0, cotx<0
D. tanx<0, cotx>0
4.
cho 630 độ < x <720 độ. kết quả đúng là
A. sinx>0, cosx>0
B. sinx<0, cosx<0
C. sinx>0, cosx<0
D. sinx<0, cosx>0
Xét tính chẵn - lẻ của hàm số:
a) \(y=x.cosx\)
b) \(y=5sin^2x+1\)
c) \(y=sinx.cosx\)
d) \(y=tanx+cotx\)
e) \(y=\dfrac{sinx-tanx}{sinx}\)
f) \(y=tan\left|x\right|\)
a: TXĐ: D=R
Với mọi x thuộc D thì -x cũng thuộc D
\(f\left(-x\right)=-x\cdot cos\left(-x\right)=-x\cdot cosx=-f\left(x\right)\)
=>f(x) lẻ
b: TXĐ: D=R
Với mọi x thuộc D thì -x cũng thuộc D
\(f\left(-x\right)=5\cdot sin^2\left(-x\right)+1=5\cdot sin^2x+1=f\left(x\right)\)
=>f(x) chẵn
c: TXĐ: D=R
Với mọi x thuộc D thì -x cũng thuộc D
\(f\left(-x\right)=sin\left(-x\right)\cdot cos\left(-x\right)=-sinx\cdot cosx=-f\left(x\right)\)
=>f(x) lẻ
Chứng minh đẳng thức sau: Tanx/sinx - sinx/cotx = cosx
\(\dfrac{tanx}{sinx}-\dfrac{sinx}{cotx}=cosx\)
\(\Leftrightarrow\dfrac{\dfrac{sinx}{cosx}}{sinx}-\dfrac{sinx}{\dfrac{cosx}{sinx}}=cosx\)
\(\Leftrightarrow\dfrac{1}{cosx}-\dfrac{sin^2x}{cosx}=cosx\)
\(\Leftrightarrow\dfrac{cos^2x}{cosx}=cosx\)
\(\Rightarrowđpcm\)
Cho biết chu kì của mỗi hàm số y = sin x , y = cos x , y = tan x , y = c o t x .
a. Hàm số y = sinx và y = cosx là hàm số tuần hoàn có chu kì là 2 π.
b. Hàm số y = tanx và y = cotx là các hàm số tuần hoàn có chu kì là π.
Tanx+cotx+(sinx-cosx)²=0
5sin2x-12 (sinx-cosx) + 12 = 0
10sinxcosx-12sinx + 12cosx + 12 = 0
-5 (sinx-cosx) ²-12 (sinx-cosx) + 17 = 0
-5 (sinx-cosx) ²-17 (sinx-cosx) +5 (sinx-cosx) + 17 = 0
(5 (sinx-cosx) +17) (- (sinx-cosx) +1) = 0
sinx-cosx = 1 hoặc sinx-cosx = -17 / 5
1. Cho sinx=-3/5 , x thuộc (-π/2 , 0) . Tính A= sinx + 6 cosx -3 tanx .
2. Cho cotx = 3 . Tính B=5sinx + 3cosx / 3cosx - 2sinx
3. Cho cosx=2/3 . Tính C= cotx-2tanx / 5cotx + tanx
4. Chứng minh ;
Cosx/ 1+ sinx +tanx = 1/ cosx
a/ \(cosx>0\Rightarrow cosx=\sqrt{1-sin^2x}=\frac{4}{5}\)
\(\Rightarrow tanx=-\frac{3}{4}\Rightarrow A=\frac{129}{20}\)
b/ \(B=\frac{5sinx+3cosx}{3cosx-2sinx}=\frac{\frac{5sinx}{sinx}+\frac{3cosx}{sinx}}{\frac{3cosx}{sinx}-\frac{2sinx}{sinx}}=\frac{5+3cotx}{3cotx-2}=\frac{5+9}{9-2}\)
c/ \(C=\frac{sinx.cosx\left(cotx-2tanx\right)}{sinx.cosx\left(5cotx+tanx\right)}=\frac{cos^2x-2sin^2x}{5cos^2x+sin^2x}=\frac{cos^2x-2\left(1-cos^2x\right)}{5cos^2x+1-cos^2x}=\frac{3cos^2x-2}{4cos^2x+1}=...\)
d/ Không dịch được đề, ko biết mẫu số bên trái nó đến đâu cả
Giải pt
\(cotx-tanx=sinx+cosx\)
\(sinx+cosx+\dfrac{1}{sinx}+\dfrac{1}{cosx}=\dfrac{10}{3}\)
1.
ĐK: \(x\ne\dfrac{k\pi}{2}\)
\(cotx-tanx=sinx+cosx\)
\(\Leftrightarrow\dfrac{cosx}{sinx}-\dfrac{sinx}{cosx}=sinx+cosx\)
\(\Leftrightarrow\dfrac{cos^2x-sin^2x}{sinx.cosx}=sinx+cosx\)
\(\Leftrightarrow\left(\dfrac{cosx-sinx}{sinx.cosx}-1\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\cosx-sinx=sinx.cosx\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=0\Leftrightarrow x=-\dfrac{\pi}{4}+k\pi\)
\(\left(2\right)\Leftrightarrow t=\dfrac{1-t^2}{2}\left(t=cosx-sinx,\left|t\right|\le2\right)\)
\(\Leftrightarrow t^2+2t-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-1+\sqrt{2}\\t=-1-\sqrt{2}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow cosx-sinx=-1+\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=-1+\sqrt{2}\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}-1}{\sqrt{2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\\x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm:
\(x=-\dfrac{\pi}{4}+k\pi;x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi;x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\)
Hãy nêu tất cả các hàm số trong các hàm số y = sin x , y = cos x , y = tan x , y = c o t x thỏa mãn điều kiện đồng biến và nhận giá trị âm trong khoảng - π 2 ; 0
A. y = tanx
B. y = sinx, y = cotx
C. y = sinx, y = tanx
D. y = tanx, y = cosx
cho x là góc nhọn
tính cosx,cotx nếu
a,sinx=\(\frac{3}{5}\)
b tanx=\(\sqrt{3}\)
c cosx=\(\frac{12}{13}\)
d cotx =1
xin lỗi mik mới lớp 8 thui kg jup dc j ròi