Cho (d) y = (m + 2)x + 4n - 3
(d') y = (3m + 1)x + n - 4
Tìm m, n để (d) // (d'); (d) cắt (d'); (d) trùng (d')
cho hàm số y = (3 - m)x + m - 1 có đồ thị (d)
1) xác định m để (d) song song với đồ thị hàm số y = 2x + 3
2) Xác định m để (d) cắt đồ thị hàm số y = x + 3m - 2 tại một điểm trên trục tung
1) Để \(d//y=2x+3\)
\(\Rightarrow\left\{{}\begin{matrix}3-m=2\\3-1\ne3\end{matrix}\right.\)
\(\Leftrightarrow m=1\)
\(\Rightarrow d:y=2x\)
2) Tọa độ giao điểm của \(y=\left(3-m\right)x+3-1\) và \(y=x+3m-2\)là nghiệm của hệ phương trình.
\(\left\{{}\begin{matrix}y=\left(3-m\right)x+m-1\\y=x+3m-2\end{matrix}\right.\)
Mà chúng cắt nhau tại 1 điểm trên trục tung
\(\Rightarrow\left(3-m\right)0+m-1=0+3m-2\)
\(\Leftrightarrow m-1=3m-2\)
\(\Leftrightarrow m=\frac{1}{2}\)
Cho (D) : y = (2m+1)x + m và (D') : y =(m-1)x + m2 +3m
Tìm m để (D) và (D') trùng nhau
Tìm m để (D) và (D') cắt nhau tạo 1 điểm nằm trên trục tung
a: Để (D) và (D') trùng nhau thì
\(\left\{{}\begin{matrix}2m+1=m-1\\m^2+3m=m\end{matrix}\right.\Leftrightarrow m=-2\)
b: Để (D) và (D') cắt nhau tại một điểm nằm trên trục tung thì
\(\left\{{}\begin{matrix}m^2+3m=m\\2m+1< >m-1\end{matrix}\right.\Leftrightarrow m=0\)
d:y=3x-5
d':y=(m-3)x+4
Tìm điều kiện m để
a) d//d' nếu 3=m-3 suy ra m=6
b) d cắt d' nếu 3# m-3 suy ra m#6
a: Để hai đường thẳng song song thì m-3=3
hay m=6
(d):y=(m-1)x+4
tìm m để (d) tạo với trục tung và trục hoành 1 tam giác có diện tích là 4
Cho hai đường thẳng: (D): 2m(m + 1)x - y = -m - 1 và (D'): 4(m - 2)x + y = 3m - 1. Xác định m để D // D'.
cho đường thẳng y= ( 1 - 3m ) x + m-1 (d) . Tìm giá trị của m để đường thẳng (d) cắt (d') y=1/2 . x - 2/3 tại điểm có hoành độ = 2
Cho Parabol (P): y=x2 và đường thẳng d: y = (m - 3)x - m +4
Tìm m để d cắt (P) tại hai điểm phân biệt A( x1; y2 ) và B ( x2; y2) sao cho tam giác ABO vuông tại O
Lời giải:
PT hoành độ giao điểm:
$x^2-(m-3)x-m+4=0(*)$
Để (d) và (P) cắt nhau tại hai điểm phân biệt $A(x_1,y_1)$ và $B(x_2,y_2)$ thì PT $(*)$ có 2 nghiệm $x_1,x_2$ phân biệt
Điều này xảy ra khi $\Delta=(m-3)^2+4(m-4)>0$
$\Leftrightarrow m^2-2m-7>0\Leftrightarrow m> 2\sqrt{2}+1$ hoặc $m< 1-2\sqrt{2}$
Áp dụng định lý Viet: $x_1+x_2=m-3$ và $x_1x_2=-m+4$
Để tam giác $OAB$ vuông tại $O$ thì:
$OA^2+OB^2=AB^2$
$\Leftrightarrow x_1^2+y_1^2+x_2^2+y_2^2=(x_1-x_2)^2+(y_1-y_2)^2$
$\Leftrightarrow x_1x_2+y_1y_2=0$
$\Leftrightarrow x_1x_2+(x_1x_2)^2=0$
$\Leftrightarrow x_1x_2(x_1x_2+1)=0$
$\Leftrightarrow x_1x_2=0$ hoặc $x_1x_2=-1$
$\Leftrightarrow -m+4=0$ hoặc $-m+4=-1$
$\Leftrightarrow m=4$ hoặc $m=5$ (đều thỏa mãn)
Cho 3 đường thẳng (d): y = ( m + 2 ) x – 3 m ; ( d ’ ) : y = 2 x + 4 ; ( d ’ ’ ) : y = − 3 x – 1 . Giá trị của m để 3 đường thẳng trên đồng quy là:
A. −1
B. 1
C. 2
D. −2
Xét phương trình hoành độ giao điểm A của (d’) và (d’’)
2 x + 4 = − 3 x – 1 ⇔ 5 x = − 5 ⇒ x = − 1 ⇒ y = 2 ( − 1 ) + 4 = 2 ⇒ A ( − 1 ; 2 )
Để (d); (d’); (d’’) đồng quy thì A ( − 1 ; 2 ) ∈ ( d )
⇔ 2 = ( m + 2 ) . ( − 1 ) – 3 m ⇔ 2 = − 2 – 4 m ⇔ 4 m = − 4 ⇒ m = − 1
Vậy khi m = − 1 thì (d); (d’); (d’’) đồng quy tại A (−1; 2)
Đáp án cần chọn là: A
Cho hai đường thẳng: (D):2m(m+1)x-y=-m-1 và (D’):4(m-2)x+y=3m-1. Xác định m để D//D’
Để hai đường song song thì 2m(m+1)=-4(m-2)
=>2m^2+2m+4m-8=0
=>2m^2+6m-8=0
=>(m+4)(m-1)=0
=>m=1 hoặc m=-4