CMR: (x+y+z).(1/x+1/y+1/z) >=9
Chio x,y,z>0.CMR:1/x+1/y>=4/x+y và 1/x+1/y+1/z>=9/x+y+z
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)
Áp dụng BĐT Cô - si
\(\Rightarrow\left\{\begin{matrix}x+y\ge2\sqrt{xy}\\\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\end{matrix}\right.\)
\(\Rightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\sqrt{xy.\frac{1}{xy}}\)
\(\Rightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\) ( đpcm )
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
Áp dụng BĐT Cô - si
\(\Rightarrow\left\{\begin{matrix}x+y+z\ge3\sqrt{xyz}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt{\frac{1}{xyz}}\end{matrix}\right.\)
\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\sqrt{xyz.\frac{1}{xyz}}\)
\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) ( đpcm )
Cho x,y,z>0 thỏa mãn x+y+z=1.CMR:\(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{9}{4}\)
từ đề bài ta có bất đẳng thức cần chứng minh tương đương:
\(3+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{9}{4}\)
<=>\(\dfrac{3}{4}+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
ta có \(\dfrac{3}{4}+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{3}{4}+\dfrac{z+y}{4x}+\dfrac{x+z}{4y}+\dfrac{x+y}{4z}=\dfrac{3}{4}+\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{4}=\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(đpcm\right)\)Dấu "=" xảy ra khi x=y=z=\(\dfrac{1}{3}\)
Áp dụng bất đẳng thức Bunhiacopxki, ta có : \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\left(1+1+1\right)^2=9\)
Áp dụng cô si 3 số dương:
\(x+y+z\ge3\sqrt[3]{xyz}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)
Nhân lại theo từng vế:\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\sqrt[3]{xyz\times\frac{1}{xyz}}=9\times1=9\)(Đpcm)
bài này bạn thêm x,y,z dương nx nhé
cho x,y,z dương và x+y+z=1 CMR:1/x^2+2yz + 1/y^2 +2xz + 1/z^2+2xy > hoặc = 9
\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=9\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
với mọi x, y, z dương thỏa mãn x+y+z =1: CMR: \(\dfrac{1+\sqrt{x}}{y+z}+\dfrac{1+\sqrt{y}}{z+x}+\dfrac{1+\sqrt{z}}{x+y}\ge\dfrac{9+3\sqrt{3}}{2}\)
Chox,y,z khác 0> biết x/1=y/2=z/3. CMR (xyz)(1/x+4/y+9/z)=35
với mọi x,y,z >0 CMR: \(\dfrac{1+\sqrt{x}}{y+z}+\dfrac{1+\sqrt{y}}{z+x}+\dfrac{1+\sqrt{z}}{x+y}\ge\dfrac{9+3\sqrt{3}}{2}\)
cho x,y,z là 3 số thực tm \(x+y+z=18\sqrt{2}\).
Cmr \(\dfrac{1}{\sqrt{x\left(y+z\right)}}+\dfrac{1}{\sqrt{y\left(z+x\right)}}+\dfrac{1}{\sqrt{z\left(x+y\right)}}+2\ge\dfrac{9}{4}\)
mng tham khảo
\(\sqrt{2x\left(y+z\right)}< =\dfrac{2x+y+z}{2}\)
=>\(\dfrac{1}{\sqrt{x\left(y+z\right)}}>=\dfrac{2\sqrt{2}}{2x+y+z}\)
=>\(P>=2\sqrt{2}\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)\)
\(\Leftrightarrow P>=2\sqrt{2}\cdot\dfrac{\left(1+1+1\right)^2}{\left(2x+y+z\right)+x+2y+z+x+y+2z}=\dfrac{18\sqrt{2}}{4\cdot18\sqrt{2}}=\dfrac{1}{4}\)
Dấu = xảy ra khi x=y=z=6căn 2
cho x/y+z+1 = y/z+1+x = z/1+x+y = 1/x+y+z. CMR biểu thức sau có giá trị nguyên: A = x+y/z+1 = y+z/1+x = z+1/x+y = 1+x/y+z