Thiếu điều kiện x,y,z dương
Ta có: \(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}+2-2=\frac{a^2+b^2-2ab}{ab}+2=\frac{\left(a-b\right)^2}{ab}+2\ge2\forall a,b>0\) (*)
Ta có: \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{x}{x}+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{y}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}+\frac{z}{z}\)
\(=3+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)\ge3+2+2+2=9\) (áp dụng (*)) (đpcm)