cho a,b,c>0 thoả mãn a+b+c=1
chứng minh rằng √(a+bc) +√(b+ca) +√(c+ab)≥1+√bc+√ca+√ab
cho abc thõa mãn ab+bc+ca=abc và a+b+c=1
chứng minh rằng (a-1).(b-1).(c-1)=0
\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(a-1\right)\left(bc-b-c+1\right)\)
\(=abc-\left(ab+bc+ca\right)+a+b+c-1\)
\(=abc-abc+1-1=0\) (đpcm)
cho a,b,c>0 thoả mãn a+b+c=1
chứng minh rằng √(a+bc) +√(b+ca) +√(c+ab)≥1+√bc+√ca+√ab
cho a,b,c là ba số dương thõa mãn điều kiện ab+bc+ca=1
Chứng minh rằng a/√1-a2+b/√1-b2+c/√1-c2 ≤ 3/2
Sửa đề: 1+a^2;1+b^2;1+c^2
\(\dfrac{a}{\sqrt{1+a^2}}=\dfrac{a}{\sqrt{a^2+ab+c+ac}}=\sqrt{\dfrac{a}{a+b}\cdot\dfrac{a}{a+c}}< =\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)
\(\dfrac{b}{\sqrt{1+b^2}}< =\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{b}{b+a}\right)\)
\(\dfrac{c}{\sqrt{1+c^2}}< =\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{a+b}\right)\)
=>\(A< =\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{3}{2}\)
Cho các số dương \(a,b,c\) thoả mãn \(a+b+c=3\). Chứng minh rằng: \(\dfrac{a^2+bc}{b+ca}+\dfrac{b^2+ca}{c+ab}+\dfrac{c^2+ab}{a+bc}\ge3\)
cho 3 số dương a, b, c thoả mãn ab+bc+ca=1. chứng minh rằng 1/ab + 1/bc + 1/ca >=3+ √(1/a²)+1 +√(1/b²)+1 +√(1/c²)+1
Xét vế trái, ta có: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{ab+bc+ca}{ab}+\frac{ab+bc+ca}{bc}+\frac{ab+bc+ca}{ca}\)(Do theo giả thiết thì ab + bc + bc = 1)
\(=\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{a}{b}+\frac{a}{c}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)+3\)
Khi đó, ta quy BĐT cần chứng minh về: \(\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{a}{b}+\frac{a}{c}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)\)\(\ge\sqrt{\frac{1}{a^2}+1}+\sqrt{\frac{1}{b^2}+1}+\sqrt{\frac{1}{c^2}+1}\)\(=\frac{\sqrt{a^2+1}}{a}+\frac{\sqrt{b^2+1}}{b}+\frac{\sqrt{c^2+1}}{c}\)
Theo BĐT Cauchy cho 2 số dương, ta có:
\(\frac{\sqrt{a^2+1}}{a}=\frac{\sqrt{a^2+ab+bc+ca}}{a}=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{a}\)\(\le\frac{\frac{a+b+a+c}{2}}{a}=\frac{2a+b+c}{2a}\)(1)
Tương tự ta có: \(\frac{\sqrt{b^2+1}}{b}\le\frac{2b+c+a}{2b}\)(2); \(\frac{\sqrt{c^2+1}}{c}\le\frac{2c+a+b}{2c}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được:
\(\frac{\sqrt{a^2+1}}{a}+\frac{\sqrt{b^2+1}}{b}+\frac{\sqrt{c^2+1}}{c}\)\(\le\frac{2a+b+c}{2a}+\frac{2b+c+a}{2b}+\frac{2c+a+b}{2c}\)
\(=3+\frac{1}{2}\left[\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{b}{c}\right)\right]\)
Đến đây, ta cần chứng minh \(\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{a}{b}+\frac{a}{c}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)\)\(\ge3+\frac{1}{2}\left[\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)+\left(\frac{c}{a}+\frac{c}{b}\right)\right]\)
\(\Leftrightarrow\frac{1}{2}\left[\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)+\left(\frac{c}{a}+\frac{c}{b}\right)\right]\ge3\)(Điều này hiển nhiên đúng vì theo BĐT Cauchy, ta có:
\(\frac{1}{2}\left[\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)+\left(\frac{c}{a}+\frac{c}{b}\right)\right]\)\(\ge\frac{1}{2}.6\sqrt[6]{\frac{a^2b^2c^2}{a^2b^2c^2}}=3\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi a = b = c = \(\frac{1}{\sqrt{3}}\)
Cho ba số thực dương a, b, c thoả mãn a+b+c=2 Chứng minh rằng:
\(\dfrac{ab}{\sqrt{2c+ab}}+\dfrac{bc}{\sqrt{2a+bc}}+\dfrac{ca}{\sqrt{2b+ca}}\le1\)
\(VT=\sqrt{\dfrac{a^2b^2}{c\left(a+b+c\right)+ab}}+\sqrt{\dfrac{b^2c^2}{a\left(a+b+c\right)+bc}}+\sqrt{\dfrac{a^2c^2}{b\left(a+b+c\right)+ac}}\\ VT=\sqrt{\dfrac{a^2b^2}{ac+ab+bc+c^2}}+\sqrt{\dfrac{b^2c^2}{a^2+ac+ab+bc}}+\sqrt{\dfrac{a^2c^2}{ab+bc+b^2+ac}}\\ VT=\sqrt{\dfrac{a^2b^2}{\left(c+a\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2c^2}{\left(b+c\right)\left(a+b\right)}}+\sqrt{\dfrac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\)
Áp dụng BĐT Cauchy-Schwarz:
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{bc}{a+b}+\dfrac{bc}{a+c}}{2}\\\sqrt{\dfrac{a^2c^2}{\left(a+b\right)\left(b+c\right)}}\le\dfrac{\dfrac{ca}{a+b}+\dfrac{ca}{b+c}}{2}\\\sqrt{\dfrac{a^2b^2}{\left(b+c\right)\left(a+c\right)}}\le\dfrac{\dfrac{ab}{b+c}+\dfrac{ab}{a+c}}{2}\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{\left(\dfrac{bc}{a+b}+\dfrac{ca}{a+b}\right)+\left(\dfrac{ca}{b+c}+\dfrac{ab}{b+c}\right)+\left(\dfrac{bc}{a+c}+\dfrac{ab}{a+c}\right)}{2}\\ \Rightarrow VT\le\dfrac{a+b+c}{2}=\dfrac{2}{2}=1\)
Dấu \("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)
Cho tam giác ABC có BC=a, AC=b, AB=c thoả mãn: ab/b+c+bc/c+a+ca/a+b=ca/b+c+ab/c+a+bc/a+b. Chứng minh tg ABC là tam giác cân
cho a b c là các số thực dương thỏa mãn a+b+c=1chứng minh (a+bc)/(b+c)+(b+ca)/(c+a)+(c+ab)/(a+b)>2
cho a,b và c là các số thực không âm thỏa mãn a+b+c=1
Chứng minh \(\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\)