Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Sao Mai
Xem chi tiết
Đinh Đức Hùng
18 tháng 10 2017 lúc 14:23

Thay ab+bc+ac = 1 vào Q

Đinh Đức Hùng
18 tháng 10 2017 lúc 14:26

Thay ab+bc+ac = 1 và Q ta được :

\(Q=\left(a^2+ab+ac+bc\right)\left(b^2+ab+ac+bc\right)\left(c^2+ab+ac+bc\right)\)

\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

\(=\left[\left(a+b\right)\left(a+c\right)\left(b+c\right)\right]^2\) là bình phương  của một số hữu tỉ (đpcm)

phan thị minh anh
Xem chi tiết
Lương Ngọc Anh
10 tháng 6 2016 lúc 15:16

thay 1 bởi ab+bc+ca

ta có :Q=\(\sqrt{\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)}\)

ta thấy \(a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)

       \(b^2+ab+bc+ca=\left(b+c\right)\left(a+b\right)\)

        \(c^2+ab+bc+ca=\left(a+c\right)\left(b+c\right)\)

=> Q= \(\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\)=\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\)là một số hữu tỉ vì a,c,b là các số hữu tỉ

Trần Ngọc Khánh
4 tháng 7 2016 lúc 15:04

Với ab + ac + bc = 1
Ta có :
a2+1=a2+ab+ac+bc=(a2+ab)+(ac+bc)

=a(a+b)+c(a+b)=(a+c)(a+b)

Tương tự, ta có:
b2+1=(b+a)(b+c) 
c2+1=(c+a)(c+b)

Do đó: 
(a2+1)(b2+1)(c2+1)=(a+c)(a+b)(b+c)(b+a)(c+a)(c+b)

=(a+b)2(a+c)2(b+c)2=|(a+b)(a+c)(b+c)|

Do a, b, c là số hữu tỷ, do đó :
|(a+b)(a+c)(b+c)| là số hữu tỷ. (đpcm)

Tâm Phạm
Xem chi tiết
Isolde Moria
6 tháng 9 2016 lúc 12:32

Vì ab+bc+ca=1

\(\Rightarrow a^2+1\)

\(=a^2+ab+bc+ca\)

\(=\left(a^2+ab\right)+\left(ac+bc\right)\)

\(=a\left(a+b\right)+c\left(a+b\right)\)

\(=\left(a+b\right)\left(a+c\right)\)

Tương tự ta được \(\begin{cases}b^2+1=\left(b+a\right)\left(b+c\right)\\c^2+1=\left(c+a\right)\left(c+b\right)\end{cases}\)

\(\Rightarrow\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{\left(a+b\right)\left(a+c\right)\left(b+a\right)\left(b+c\right)\left(c+a\right)\left(c+b\right)}\)

\(=\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\)

\(=\left|\left(a+b\right)\left(b+c\right)\left(c+a\right)\right|\)

Mặt khác a;b;c là số hữa tỉ

\(\Rightarrow\begin{cases}a+b\\b+c\\c+a\end{cases}\) là số hữu tỉ

\(\Rightarrow\left|\left(a+b\right)\left(b+c\right)\left(c+a\right)\right|\) là số hữu tỉ

=> đpcm

Cuồng Song Joong Ki
Xem chi tiết
Hoàng Lê Bảo Ngọc
10 tháng 6 2016 lúc 15:20

Ta có : \(a^2+1=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)(thay từ giả thiết)

Tương tự : \(b^2+1=\left(b+c\right)\left(b+a\right)\);  \(c^2+1=\left(c+b\right)\left(c+a\right)\)

Suy ra : \(Q=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{\left(a+b\right)^2.\left(b+c\right)^2.\left(c+a\right)^2}=\left|\left(a+b\right)\left(b+c\right)\left(c+a\right)\right|\)Vì a,b,c là các số hữu tỉ nên suy ra Q là số hữu tỉ.

Lương Ngọc Anh
10 tháng 6 2016 lúc 15:20

thay 1 bởi ab+bc+ca

ta có :

Q=\(\sqrt{\left(a^2+ab+bc+Ca\right)\left(b^2+bc+ab+ca\right)\left(c^2+ab+bc+ca\right)}\)

ta thấy : \(a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)

              \(b^2+ab+bc+ca=\left(b+c\right)\left(a+b\right)\)

           \(c^2+ab+bc+ca=\left(a+c\right)\left(b+c\right)\)

=> Q=\(\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\)=\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\)là số hữu tỉ vì a,b,c là các số hữu tỉ

huongkarry
Xem chi tiết
Đinh quang hiệp
23 tháng 6 2018 lúc 8:39

\(P=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)

\(=\sqrt{\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ca+ab+bc\right)}\)

\(=\sqrt{\left(a\left(a+b\right)+c\left(a+b\right)\right)\left(b\left(a+b\right)+c\left(a+b\right)\right)\left(c\left(a+c\right)+b\left(a+c\right)\right)}\)

\(=\sqrt{\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)}=\sqrt{\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2}\)

\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

vì a,b,c là sô số hữu tỉ\(\Rightarrow a+b,a+c,b+c\)là số hữu tỉ \(\Rightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)\)là số hữu tỉ

\(\Rightarrow P\)là số hữu tỉ   (đpcm)

Vân Trần Thị
Xem chi tiết
tthnew
30 tháng 10 2019 lúc 19:27

\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)

\(=\sqrt{\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)}\)

\(=\sqrt{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}=\left|\left(a+b\right)\left(b+c\right)\left(c+a\right)\right|\) là một số hữu tỉ (đpcm)

P/s:Em ko chắc!

Khách vãng lai đã xóa
Trần Thúy Hằng
Xem chi tiết
Hà An
23 tháng 7 2017 lúc 20:16

Với ab + bc + ca = 1

Ta có:

\(a^2+1=a^2+ab+ac+bc=\left(a^2+ab\right)+\left(ac+bc\right)\)

\(=a\left(a+b\right)+c\left(a+b\right)=\left(a+c\right)\left(a+b\right)\)

Tương tự ta có:

\(b^2+1=\left(b+a\right)\left(b+c\right)\)

\(c^2+1=\left(c+a\right)\left(c+b\right)\)

Do đó:

\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+a\right)\left(c+a\right)\left(c+b\right)}\)

\(=\sqrt{\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2=\left|\left(a+b\right)\left(a+c\right)\left(b+c\right)\right|}\)

Do a, b ,c là số hữu tỉ

=> \(\left|\left(a+b\right)\left(a+c\right)\left(b+c\right)\right|\) là số hữu tỉ.

=> đpcm

Nguyen Bao Linh
24 tháng 7 2017 lúc 16:24

Thay 1 = ab + bc + ca, ta được:

a2 + 1 = (a + b)(a + c);

b2 + 1 = (b + c)(b + a);

c2 + 1 = (c + a)(c + b)

Do đó B = (a2 + 1)(b2 + 1)(c2 + 1) = [(a + b)(b + c)(c + a)]2

=> \(\sqrt{B}=\left|\left(a+b\right)\left(b+c\right)\left(c+a\right)\right|\)

Đó là một số hữu tỉ vì a, b, c là các số hữu tỉ

Fairy Tail
Xem chi tiết
Phan Nghĩa
20 tháng 9 2017 lúc 20:09

Fairy Tail bn tham khảo nè:

x, y , z hữu tỉ 
√x + √y + √z hữu tỉ 
- Nếu trong ba số √x , √y , √z có 1 số hữu tỉ , giả sử √x => √y + √z hữu tỉ 
Đặt y = a/b; z = c/d đều hữu tỉ với a,b, c, d thuộc N * 
√y + √z hữu tỉ => (√y + √z)² hữu tỉ => √(zy) hữu tỉ => √(ac/bd) hữu tỉ => ac/bd = (p/q)² => √(a/b) = p/q√(d/c) với p, q Є N* 
=> √y + √z = √(a/b) + √(c/d) = p/q√(d/c) + √(c/d) = (pd + qc)/√(cd) hữu tỉ => √(cd) hữu tỉ => d√(c/d) = √(cd) hữu tỉ => √z = √(c/d) hữu tỉ => √y cung hữu tỉ 
Vậy √x , √y , √z đều là số hữu tỉ 
- Nếu cả √x , √y , √z đều là số vô tỉ 
Đặt √x + √y + √z = p/q với p, q thuộc N* => x + y + 2√(xy) = (p/q)² - 2p/q √z + z => 
=> √(xy) + p/q√z hữu tỉ 
Do xy hửu tỉ và (p/q)^2 z hữu tỉ nên có thể đặt xy = a/b và (p/q)^2 z = c/d 
thì ta có √(a/b) + √(c/d) hữu tỉ. đến đây lí luận như trường hợp trên thì suy ra √(xy) và p/q√z hữu tỉ => √z hữu tỉ => mâu thuẫn với giả thiết √z vô tỉ 
Vậy √x , √y , √z đều là số hữu tỉ 
````````````````````````````` 
Với bài 3 em có thể rút ngắn hơn bằng cách giả sử một trong ba số √x , √y , √z là số vô tỉ , ví dụ là √z, sau đó dùng cách lý luận ở trường hợp 2 suy ra √(xy) + p/q√z hữu tỉ, sau đó lại áp dụng lý luận như của trường hợp 1 để suy ra √z vô tỉ => trái giả thiết, tức là ko có số nào trong chứng là số vô tỉ cả. Đến đây bài toán đã dc chưng minh xong 
```````````````````````````````````````... 
Bài 4/ Đề của em ko đúng, phải thay dấu - bằng dấu + . Khi đó ta làm thế này 
(b^2+c^2-a^2)/2bc+(a^2+c^2-b^2)/2ca +(a^2+b^2-c^2)/2ab=1 
<=> (b^2+c^2-a^2)/2bc - 1 +(a^2+c^2-b^2)/2ca - 1 + (a^2+b^2-c^2)/2ab + 1 = 0 
<=> a[ (b-c)² - a²] + b[ ( a-c)² -b²] + c[ (a+b)² - c²] = 0 
<=> a( a+b-c)(b-a-c) + b( a+b-c)(a-b-c) + c(a+b-c)(a+b+c) = 0 
<=> (a+b-c) [ c(a+b+c) -a(a+c-b) - b(b+c-a)] = 0 
<=> (a+b-c)[ c² -(a-b)²] = 0 
<=> (a+b-c)(a+c-b)(b+c-a) = 0 
nếu a + b = c =>(b^2+c^2-a^2)/2bc = 1 ; (a^2+c^2-b^2)/2ca = 1 và (a^2+b^2-c^2)/2ab = -1 
xét tương tự cho các trường hợp a + c-b = 0 và b+c-a = 0 suy ra DPCM 

Phan Nghĩa
20 tháng 9 2017 lúc 20:14

Câu hỏi của Minh Triều - Toán lớp 9 - Học toán với OnlineMath

Sultanate of Mawadi
28 tháng 9 2020 lúc 19:31

ᠤᠤ ᠪᠣᠯᠤᠭᠰᠠᠨ ᠪᠤᠢ?

Khách vãng lai đã xóa
Big City Boy
Xem chi tiết