trục căn thức ở mẫu:
\(\frac{5}{5-2\sqrt{3}}\) ; \(\frac{2a}{1-\sqrt{a}}\) Với a>0 hoặc a=0 và a # 1
\(\frac{4}{\sqrt{7}+\sqrt{5}}\); \(\frac{6a}{2\sqrt{a}-\sqrt{b}}\) Với a> b > 0
Giúp mình với nha. Cảm ơn các bạn.
trục căn thức ở mẫu: \(\frac{3\sqrt{3}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
Ta có : \(\frac{3\sqrt{3}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}=\frac{3\sqrt{3}\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}\)
\(=\frac{3\sqrt{3}\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3}\right)^2-\left(\sqrt{5}\right)^2}=\frac{3\sqrt{3}\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}{2\sqrt{6}}\)
\(=\frac{3\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}{2\sqrt{2}}=\frac{3\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}{4}\)
trục căn thức ở mẫu
\(G=\frac{4}{3+\sqrt{5}+\sqrt{2+2\sqrt{5}}}\)
Trục căn thức ở mẫu \(\frac{2}{\sqrt{3}-5}\)
\(\frac{2}{\sqrt{3}-5}=\frac{2\left(\sqrt{3}+5\right)}{3-5^2}=\frac{2\left(\sqrt{3}+5\right)}{-22}=\frac{-5-\sqrt{3}}{11}\)
Trục căn thức ở mẫu:
\(\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
\(\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}\)
\(=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{\left(\sqrt{2}+\sqrt{3}\right)^2-\left(\sqrt{5}\right)^2}=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{2+2\sqrt{2\cdot3}+3-5}=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{5+2\sqrt{6}-5}=\frac{\sqrt{6}\cdot\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}{\sqrt{6}\cdot2\sqrt{6}}=\frac{2\sqrt{3}+3\sqrt{2}-\sqrt{30}}{12}\)
Ta có \(\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\) = \(\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{5+2\sqrt{6}-5}\)
= \(\frac{\sqrt{6}\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}{12}\)
Trục căn thức ở mẫu:
\(\frac{1}{\sqrt{5}-\sqrt{3}+2}\)
Trục căn thức ở mẫu:
\(\frac{1}{\sqrt{5}-\sqrt{3}+2}\)
\(A=\frac{1}{\sqrt{5}-\sqrt{3}+2}\)
\(A=\frac{1}{\left(\sqrt{5}+2\right)+\sqrt{3}}\)
\(A=\frac{1\left(\left(\sqrt{5}+2\right)-\sqrt{3}\right)}{\left(\left(\sqrt{5}+2\right)+3\right)\left(\left(\sqrt{5}+2\right)-\sqrt{3}\right)}\)
\(A=\frac{\sqrt{5}+2-\sqrt{3}}{\left(\sqrt{5}+2\right)^2-3}\)
\(A=\frac{\sqrt{5}+2-\sqrt{3}}{6-4\sqrt{5}}\)
\(A=\frac{\left(\sqrt{5}+2-\sqrt{3}\right)\left(6+4\sqrt{5}\right)}{\left(6-4\sqrt{5}\right)\left(6+4\sqrt{5}\right)}\)
\(A=\frac{6\sqrt{5}+20+12+8\sqrt{5}-6\sqrt{3}-4\sqrt{15}}{36-16\cdot5}\)
\(A=\frac{14\sqrt{5}+32-6\sqrt{3}-4\sqrt{15}}{-44}\)
\(A=\frac{6\sqrt{3}+4\sqrt{15}-14\sqrt{5}-32}{44}\)
Nhớ k cho mik đó nha ....... rồi kb lun ahihi
Trục căn thức ở mẫu:
\(\frac{1}{\sqrt{5}-\sqrt{3}+2}\)
có công thức rồi mà cậu,bài này dễ,cậu thử áp dụng công thức xemm..
Trục căn thức ở mẫu các biểu thức sau:
\(a,\frac{\sqrt{5}}{\sqrt{3-\sqrt{5}}}\)
\(b,\frac{31}{2+\sqrt{2}-\sqrt{5}}\)
\(a,\frac{\sqrt{5}}{\sqrt{3-\sqrt{5}}}=\frac{\sqrt{5}\left(\sqrt{3+\sqrt{5}}\right)}{\sqrt{\left(3-\sqrt{5}\right).\left(3+\sqrt{5}\right)}}\)
\(=\frac{\sqrt{5}\left(\sqrt{3+\sqrt{5}}\right)}{\sqrt{9-5}}=\frac{\sqrt{5}\left(\sqrt{3+\sqrt{5}}\right)}{\sqrt{4}}=\frac{\sqrt{5}\left(\sqrt{3+\sqrt{5}}\right)}{2}\)
trục căn thức ở mẫu :
A = \(\frac{3\sqrt{3}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
có ai biết giải bài này k hộ mình vs ( chi tiết hộ mình nhé )
bài 1: trục căn thức ở mẫu và rút gọn
a, \(\dfrac{1}{2\sqrt{2}-3\sqrt{3}}\)
b, \(\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}\)
bài 2: trục căn thức ở mẫu và rút gọn
a, \(\dfrac{\sqrt{8}}{\sqrt{5}-\sqrt{3}}\)
b, \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)
bài 3: trục căn thức và thực hiện phép tính
a, M=\(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right).\left(\sqrt{6}+11\right)\)
b, N= \(\left(1-\dfrac{5+\sqrt{5}}{1+\sqrt{5}}\right).\left(\dfrac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
Bài 1:
a.
\(\frac{1}{2\sqrt{2}-3\sqrt{3}}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2}-3\sqrt{3})(2\sqrt{2}+3\sqrt{3})}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2})^2-(3\sqrt{3})^2}=\frac{2\sqrt{2}+3\sqrt{3}}{-19}\)
b.
\(=\sqrt{\frac{(3-\sqrt{5})^2}{(3-\sqrt{5})(3+\sqrt{5})}}=\sqrt{\frac{(3-\sqrt{5})^2}{3^2-5}}=\sqrt{\frac{(3-\sqrt{5})^2}{4}}=\sqrt{(\frac{3-\sqrt{5}}{2})^2}=|\frac{3-\sqrt{5}}{2}|=\frac{3-\sqrt{5}}{2}\)
Bài 2.
a.
\(=\frac{\sqrt{8}(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}=\frac{2\sqrt{2}(\sqrt{5}+\sqrt{3})}{5-3}=\sqrt{2}(\sqrt{5}+\sqrt{3})=\sqrt{10}+\sqrt{6}\)
b.
\(=\sqrt{\frac{(2-\sqrt{3})^2}{(2-\sqrt{3})(2+\sqrt{3})}}=\sqrt{\frac{(2-\sqrt{3})^2}{2^2-3}}=\sqrt{(2-\sqrt{3})^2}=|2-\sqrt{3}|=2-\sqrt{3}\)
Bài 3:
a.
\(M=\left[\frac{15(\sqrt{6}-1)}{(\sqrt{6}+1)(\sqrt{6}-1)}+\frac{4(\sqrt{6}+2)}{(\sqrt{6}-2)(\sqrt{6}+2)}-\frac{12(3+\sqrt{6})}{(3-\sqrt{6})(3+\sqrt{6})}\right](\sqrt{6}+11)\)
\(=\left[\frac{15(\sqrt{6}-1)}{6-1}+\frac{4(\sqrt{6}+2)}{6-2^2}-\frac{12(3+\sqrt{6})}{3^2-6}\right](\sqrt{6}+11)\)
\(=[3(\sqrt{6}-1)+2(\sqrt{6}+2)-4(3+\sqrt{6})](\sqrt{6}+11)=(\sqrt{6}-11)(\sqrt{6}+11)=6-11^2=-115\)
b.
\(N=\left[1-\frac{\sqrt{5}(\sqrt{5}+1)}{\sqrt{5}+1}\right].\left[\frac{\sqrt{5}(\sqrt{5}-1)}{1-\sqrt{5}}-1\right]\)
\(=(1-\sqrt{5})(-\sqrt{5}-1)=(\sqrt{5}-1)(\sqrt{5}+1)=5-1=4\)