Cho a2-b2=4c2 .Chứng minh rằng:
(5a-3b+8c)(5a-3b-8c)=(3a-5b)2
Cho a2 -b2 =4c2. Chứng minh rằng: (5a -3b +8c)( 5a -3b +8c) = (3a -5b)2
Cho a2 - b2= 4c2. Chứng minh rằng: (5a - 3b + 8c).(5a - 3b - 8c) = (3a - 5b)2
Ta có : \(\left(5a-3b+8c\right)\left(5a-3b-8c\right)\)
\(=\left(5a-3b\right)^2-\left(8c\right)^2\)
\(=\left(5a-3b\right)^2-64c^2\)
\(=\left(5a-3b\right)^2-16.4c^2\)
\(=\left(5a-3b\right)^2-16\left(a^2-b^2\right)\)
\(=25a^2-30ab+9b^2-16a^2+16b^2\)
\(=9a^2-30ab+25b^2\)
\(=\left(3a-5b\right)^2\left(đpcm\right)\)
cho a2 -b2 = 4c2 chứng minh rằng hằng đẳng thức
(5a -3b +8c) (5a - 3b -8c ) = (3a -5b)2
\(a^2-b^2=4c^2\)
Chứng minh rằng:(5a-3b+8c)(5a-3b-8c)=\(\left(3a-5b\right)^{2^{ }}\)
1/ Cho a2-b2=4c2. Chứng minh rằng (5a-3b+8c)(5a-3b-8c)=(3a-5b)2
giúp tôi !
( 5a - 3b + 8c )( 5a - 3b - 8c )
= [ ( 5a - 3b ) + 8c ][ ( 5a - 3b ) - 8c ]
= ( 5a - 3b )2 - ( 8c )2
= 25a2 - 30ab + 9b2 - 64c2
= 25a2 - 30ab + 9b2 - 16.4c2
= 25a2 - 30ab + 9b2 - 16( a2 - b2 ) < vì a2 - b2 = 4c2 >
= 25a2 - 30ab + 9b2 - 16a2 + 16b2
= 9a2 - 30ab + 25b2
= ( 3a - 5b )2
=> đpcm
\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(3a-5b\right)^2\)
\(VT=\left(5a-3b+8c\right)\left(5a-3b-8c\right)\)
\(=\left(5a-3b\right)^2-\left(8c\right)^2\)
\(=25a^2-30ab+9b^2-64c^2\)
\(=25a^2-30ab+9b^2-16.4c^2\)
\(=25a^2-30ab+9b^2-16.\left(a^2-b^2\right)\)
\(=25a^2-30ab+9b^2-16a^2+16b^2\)
\(=9a^2-30ab+25b^2\)
\(=\left(3a-5b\right)^2\left(đpcm\right)\)
Cho \(a^2-b^2=4c^2\). Chứng minh rằng \(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(3a-5b\right)^2\)
Ta có: \(a^2-b^2=4c^2\)
\(\Rightarrow a^2-b^2-4c^2=0\)
Xét hiệu:
\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)-\left(3a-5b\right)^2\)
\(=\left(5a-3b\right)^2-\left(8c\right)^2-\left(3a-5b\right)^2\)
\(=25a^2-30ab+9b^2-64c^2-9a^2+30ab-25b^2\)
\(=16a^2-16b^2-64c^2\)
\(=16\left(a^2-b^2-4c^2\right)\)
\(=16.0\)
\(=0\)
\(\Rightarrow\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(3a-5b\right)^2\)
đpcm
Tham khảo nhé~
Một cách khác :))
Xét VT của biểu thức cần cm ta có :
( 5a - 3b + 8c )( 5a - 3b - 8c )
= [ ( 5a - 3b ) + 8c ][ ( 5a - 3b ) - 8c ]
= ( 5a - 3b )2 - ( 8c )2
= 25a2 - 30ab + 9b2 - 64c2
= 25a2 - 30ab + 9b2 - 16.4c2
= 25a2 - 30ab + 9b2 - 16( a2 - b2 ) < theo đề a2 - b2 = 4c2 >
= 252 - 30ab + 9b2 - 16a2 + 16b2
= 9a2 - 30ab + 25b2
= ( 3a - 5b )2 = VP
=> đpcm
Cho a2-b2=4c2. Chứng minh:
(5a-3b+8c)(5a-3b-8c)=(3a-5b)2
Ta có:
\(VT=(5a-3b+8c).(5a-3b-8c)\)
\(=\left(5a-3b\right)^2-\left(8c\right)^2\)
Mà \(a^2-b^2=4c^2\) nên:
\(VT=25^2-30ab+9b^2-16.\left(a^2-b^2\right)\)
\(=9a^2-30ab+25b^2\)
\(=\left(3a-5b\right)^2=VP\)
\(\Rightarrow\) Đpcm.
cho a2 - b2 = 4c2 chứng minh (5a - 3b +8c) (5a-3b-8c) = (3a-5b)2
VT= (5a-3b)^2 - 64c^2=25a^2-30ab + 9b^2 -16a^2+16b^2=9a^2-30ab+25b^2= (3a-5b)^2 = VP (đpcm)
Xét VT ta có :
VT = ( 5a - 3b + 8c )( 5a - 3b - 8c )
= ( 5a - 3b )2 - ( 8c )2
= 25a2 - 30ab + 9b2 - 64c2
= 25a2 - 30ab + 9b2 - 16.4c2
= 25a2 - 30ab + 9b2 - 16( a2 - b2 )
= 25a2 - 30ab + 9b2 - 16a2 + 16b2
= 9a2 - 30ab + 25b2
= ( 3a - 5b )2 = VP
=> đpcm
cho a2 + b2 = 4c2. Chứng minh: (5a - 3b + 8c). (5a - 3b - 8c) = (3a - 5b)2
Sửa đề của bạn : a2 - b2 = 4c2
(5a - 3b + 8c). (5a - 3b - 8c) = (5a - 3b)2 - (8c)2 = 25a2 - 30ab + 9b2 - 16. (a2 - b2) = 9a2 - 30ab + 25b2 = (3a - 5b)2