Rút gọn :
a) a2 + 4ab + 3b2 - 2b - 1
b) a2 - 2ab - 2b - 1
Với a<2b<0, rút gọn \(\dfrac{1}{a-2b}\)√b2(a2-4ab+4b2)
\(\dfrac{1}{a-2b}.\sqrt{b^2\left(a^2-4ab+4b^2\right)}=\dfrac{1}{a-2b}.b.\left|a-2b\right|=\dfrac{1}{a-2b}.b.\left(2b-a\right)=-b\)
\(\dfrac{1}{a-2b}\cdot\sqrt{b^2\cdot\left(a^2-4ab+b^2\right)}\)
\(=\dfrac{1\cdot\left(a-2b\right)}{a-2b}\cdot b\)
=b
rút gọn (a+2b-c)(a+2b+c)-(a2+4b2-c2)
Lời giải:
$(a+2b-c)(a+2b+c)-(a^2+4b^2-c^2)=(a+2b)^2-c^2-a^2-4b^2+c^2$
$=(a+2b)^2-a^2-4b^2$
$=a^2+4ab+4b^2-a^2-4b^2=4ab$
\(=\left[\left(a+2b\right)^2-c^2\right]-\left(a^2+4b^2-c^2\right)\)
\(=a^2+4ab+4b^2-c^2-a^2-4b^2+c^2\)
\(=4ab\)
Rút gọn biểu thức (a+b/b-2b/b-a).b-a/a2+b2+(a2+1/2a-1-a/2):a+2/1-2a
Tìm giá trị nhỏ nhất của:
N=a2+b2+2a-b-\(\dfrac{1}{4}\)
P=a2+2a-4ab+5b2-2b-10
a) Ta có: \(N=a^2+b^2+2a-b-\dfrac{1}{4}\)
\(=a^2+2a+1+b^2-b+\dfrac{1}{4}-\dfrac{3}{2}\)
\(=\left(a+1\right)^2+\left(b-\dfrac{1}{2}\right)^2-\dfrac{3}{2}\ge-\dfrac{3}{2}\forall a,b\)
Dấu '=' xảy ra khi a=-1 và \(b=\dfrac{1}{2}\)
Tìm giá trị nhỏ nhất của:
N=a2+b2+2a-b\(-\dfrac{1}{4}\)
P=a2+2a-4ab+5b2-2b-10
a) Ta có: \(N=a^2+b^2+2a-b-\dfrac{1}{4}\)
\(=a^2+2a+1+b^2-b+\dfrac{1}{4}-\dfrac{3}{2}\)
\(=\left(a+1\right)^2+\left(b-\dfrac{1}{2}\right)^2-\dfrac{3}{2}\ge-\dfrac{3}{2}\forall a,b\)
Dấu '=' xảy ra khi a=-1 và \(b=\dfrac{1}{2}\)
Cho đẳng thức a − 2 b 27 a 3 + b 3 . B = a 2 + 4 ab + 4 b 2 9 a 2 − 3 ab + b 2 với a ≠ − 1 3 b và a ≠ 2 b . Tìm B.
Tính giá trị biểu thức:
a) M = (a - 2b)( a 2 + 2ab + 4 b 2 ) + ( 2 b - a ) 3 tại a = -1; b = 2;
b) N = (2xy - 2)(2xy + 3) - ( 1 - 2 xy ) 2 tại x = 1 2 ; y = -1.
a) Rút gọn M = -6ab(-2b + a). Tính được M = 60.
b) Rút gọn M = 6xy – 7. Tính được N = -10.
Thực hiện nhanh các phép chia:
a) ( a 4 - 2 a 2 b 2 + b 4 ) : ( a 2 + 2 ab + b 2 ) ;
b) ( - 8 a 3 + 48 a 2 b - 96 ab 2 + 64 b 3 ) : (a - 2b).
a) Kết quả ( a – b ) 2 .
Gợi ý a 4 – 2 a 2 b 2 + b 4 = ( a 2 – b 2 ) 2 = ( a – b ) 2 ( a + b ) 2 .
b) Kết quả - 8 ( a – 2 b ) 2 .
Rút gọn biểu thức P = a b − 2 a b + 1 : b − a 2 .
A. 1 b
B. 1 a
C. b
D. 1 b