Thu gọn biểu thức:
\(A=\left(\sqrt{3}+1\right)\cdot\left(\frac{14-6\sqrt{3}}{5+\sqrt{3}}\right)\)
Thu gọn biểu thức:
\(B=21\cdot\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)^2-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)^2-15\sqrt{15}\)
\(B=\dfrac{21}{2}\left(\sqrt{4+2\sqrt{3}}+\sqrt{6-2\sqrt{5}}\right)^2-3\left(\sqrt{4-2\sqrt{3}}+\sqrt{6+2\sqrt{5}}\right)^2-15\sqrt{15}\)
\(=\dfrac{21}{2}\left(\sqrt{3}+1+\sqrt{5}-1\right)^2-3\left(\sqrt{3}-1+\sqrt{5}+1\right)^2-15\sqrt{15}\)
\(=\dfrac{21}{2}\left(\sqrt{3}+\sqrt{5}\right)^2-3\left(\sqrt{3}+\sqrt{5}\right)^2-15\sqrt{15}\)
\(=\dfrac{15}{2}\left(8+2\sqrt{15}\right)-15\sqrt{15}\)
\(=60+15\sqrt{15}-15\sqrt{15}=60\)
Thu gọn biểu thức:
A=\(\left(\sqrt{3}+1\right)\sqrt{\frac{14-6\sqrt{3}}{5+\sqrt{3}}}\)
\(A=\left(\sqrt{3}+1\right)\sqrt{\frac{14-6\sqrt{3}}{5+\sqrt{3}}}=\left(\sqrt{3}+1\right)\sqrt{\frac{20+4\sqrt{3}-10\sqrt{3}-6}{5+\sqrt{3}}}=\left(\sqrt{3}+1\right)\sqrt{\frac{4\left(5+\sqrt{3}\right)-2\sqrt{3}\left(5+\sqrt{3}\right)}{5+\sqrt{3}}}=\left(\sqrt{3}+1\right)\sqrt{\frac{\left(4-2\sqrt{3}\right)\left(5+\sqrt{3}\right)}{5+\sqrt{3}}}=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}=\left(\sqrt{3}+1\right)\sqrt{3-2\sqrt{3}+1}=\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3}-1\right)^2}=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=3-1=2\Rightarrow A=2\)
1. Rút gọn \(A=\frac{\sqrt{14+6\sqrt{5}}-\sqrt{14-6\sqrt{5}}}{\sqrt{\left(\sqrt{5}+1\right)\cdot\sqrt{6-2\sqrt{5}}}}\)
2.Tính a) \(B=\left(\sqrt[3]{2}+1\right)^3\cdot\left(\sqrt[3]{2}-1\right)^3\)
b)Tìm C=\(a^3b-ab^3\) với \(a=\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}\); \(b=\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\)
3. Giải \(\left|x^2-x+1\right|-\left|x-2\right|=6\)
Bài 1:
Xét tử số:
\(\sqrt{14+6\sqrt{5}}-\sqrt{14-6\sqrt{5}}=\sqrt{3^2+5+2.3\sqrt{5}}-\sqrt{3^2+5-2.3\sqrt{5}}\)
\(=\sqrt{(3+\sqrt{5})^2}-\sqrt{(3-\sqrt{5})^2}=3+\sqrt{5}-(3-\sqrt{5})=2\sqrt{5}\)
Xét mẫu số:
\(\sqrt{(\sqrt{5}+1)\sqrt{6-2\sqrt{5}}}=\sqrt{(\sqrt{5}+1)\sqrt{5+1-2\sqrt{5}}}=\sqrt{(\sqrt{5}+1)\sqrt{(\sqrt{5}-1)^2}}\)
\(=\sqrt{(\sqrt{5}+1)(\sqrt{5}-1)}=\sqrt{4}=2\)
Do đó: $A=\frac{2\sqrt{5}}{2}=\sqrt{5}$
Bài 2:
a)
$B=(\sqrt[3]{2}+1)^3(\sqrt[3]{2}-1)^3$
$=[(\sqrt[3]{2}+1)(\sqrt[3]{2}-1)]^3$
$=(\sqrt[3]{4}-1)^3$
$=3-3\sqrt[3]{16}+3\sqrt[3]{4}$
b)
Với $a,b$ đã cho ta đặt $\sqrt[3]{2}=x$. Khi đó:
\(a=\frac{6}{2x-2+\frac{2}{x}}=\frac{3x}{x^2-x+1}=\frac{3x(x+1)}{x^3+1}=\frac{3x(x+1)}{2+1}=x(x+1)\)
\(b=\frac{2}{2x+2+\frac{2}{x}}=\frac{x}{x^2+x+1}=\frac{x(x-1)}{x^3-1}=\frac{x(x-1)}{2-1}=x(x-1)\)
Khi đó:
$C=a^3b-ab^3=ab(a^2-b^2)=ab(a-b)(a+b)$
$=x^2(x^2-1)(2x)(2x^2)=4x^5(x^2-1)=8\sqrt[3]{4}(\sqrt[3]{4}-1)$
Bài 3:
Ta biết rằng $x^2-x+1=(x-\frac{1}{2})^2+\frac{3}{4}>0$ với mọi $x\in\mathbb{R}$
Do đó:
$|x^2-x+1|-|x-2|=6$
$\Leftrightarrow x^2-x+1-|x-2|=6(*)$
Nếu $x\geq 2$ thì $(*)\Leftrightarrow x^2-x+1-(x-2)=6$
$\Leftrightarrow x^2-2x-3=0$
$\Leftrightarrow (x-3)(x+1)=0$
$\Leftrightarrow x=3$ (do $x\geq 2$)
Nếu $x< 2$ thì $(*)\Leftrightarrow x^2-x+1-(2-x)=6$
$\Leftrightarrow x^2-7=0$
$\Rightarrow x=-\sqrt{7}$ (do $x< 2$)
Vậy........
Thu gọn biểu thức sau
\(\left(\sqrt{3}+1\right)\sqrt{\frac{14-6\sqrt{3}}{5+\sqrt{3}}}\)
\(=\left(\sqrt{3}+1\right)\sqrt{\frac{\left(14-6\sqrt{3}\right)\left(5-\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}}\)
\(=\left(\sqrt{3}+1\right)\sqrt{\frac{70-14\sqrt{3}-30\sqrt{3}+18}{25-\sqrt{3}^2}}\)
\(=\left(\sqrt{3}+1\right)\sqrt{\frac{88-44\sqrt{3}}{22}}\)
\(=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}\)
Rút gọn biểu thức \(A=\frac{\sqrt{1+\sqrt{1-x^2}}\cdot\left[\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\right]}{2+\sqrt{1-x^2}}\)
Thu gọn biểu thức sau:
\(\left(\sqrt{3}+1\right)\)\(\sqrt{\frac{14-6\sqrt{3}}{5+\sqrt{3}}}\)
mình không viết lại đề nha
\(=\sqrt{\frac{\left(\sqrt{3}+1\right)^2.\left(14-6\sqrt{3}\right)}{5+\sqrt{3}}}\)
\(=\sqrt{\frac{\left(3+2\sqrt{3}+1\right).\left(14-6\sqrt{3}\right)}{5+\sqrt{3}}}\)
\(=\sqrt{\frac{\left(4+2\sqrt{3}\right).\left(14-6\sqrt{3}\right)}{5+\sqrt{3}}}\)
\(=\sqrt{\frac{56-24\sqrt{3}+28\sqrt{3}-36}{5+\sqrt{3}}}\)
\(=\sqrt{\frac{20+4\sqrt{3}}{5+\sqrt{3}}}\)
\(=\sqrt{\frac{\left(20+4\sqrt{3}\right).\left(5-\sqrt{3}\right)}{\left(5+\sqrt{3}\right).\left(5-\sqrt{3}\right)}}\)
\(=\sqrt{\frac{100-20\sqrt{3}+20\sqrt{3}-12}{5^2-\sqrt{3}^2}}\)
\(=\sqrt{\frac{88}{25-3}}\)
\(=\sqrt{\frac{88}{22}}\)
\(=\sqrt{4}\)
\(=2\)
HỌC TỐT !!!
1. Rút gọn \(A=\sqrt{x+\sqrt{2x-1}}-\sqrt{x-\sqrt{2x-1}}\)
2. Tính \(B=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)
3.Tính \(C=\frac{\sqrt{3-\sqrt{5}}\cdot\left(\sqrt{10}-\sqrt{2}\right)\cdot\left(3+\sqrt{5}\right)}{\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}}\)
Bài 2:
Ta có: \(B=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)
\(=\frac{\sqrt{\sqrt{5}-1}\left(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}\right)}{2}-\sqrt{2-2\cdot\sqrt{2}\cdot1+1}\)
\(=\frac{\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}}{2}-\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\frac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}}{2\sqrt{2}}-\left(\sqrt{2}-1\right)\)
\(=\frac{\sqrt{5}+1+3-\sqrt{5}}{2\sqrt{2}}-\sqrt{2}+1\)
\(=\frac{4}{2\sqrt{2}}-\sqrt{2}+1\)
\(=\sqrt{2}-\sqrt{2}+1\)
=1
câu 1. đkxđ: \(x\ge\frac{1}{2}\)
\(A\sqrt{2}=\sqrt{2x+2\sqrt{2x-1}}-\sqrt{2x-2\sqrt{2x-1}}\)
\(=\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}\)
\(=\sqrt{\left(\sqrt{2x-1}+1\right)^2}-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)
\(=\sqrt{2x-1}+1-\left|\sqrt{2x-1}-1\right|\)
nếu \(\left|\sqrt{2x-1}-1\right|=\sqrt{2x-1}-1\) với \(\sqrt{2x-1}\ge1\Leftrightarrow x\ge1\)
thì \(A\sqrt{2}=\sqrt{2x-1}+1-\sqrt{2x-1}+1=2\)
=> A=\(\sqrt{2}\)
nếu \(\left|\sqrt{2x-1}-1\right|=1-\sqrt{2x-1}\) với \(\frac{1}{2}\le x< 1\)
thì \(A\sqrt{2}=\sqrt{2x-1}+1-1+\sqrt{2x-1}=2\sqrt{2x-1}\)
=> A= \(\sqrt{4x-2}\)
câu 3: C = \(\frac{\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)}{\left(\text{4+\sqrt{15}}\right)\left(\sqrt{10-\sqrt{6}}\right)\sqrt{4-\sqrt{15}}}\)
\(=\frac{\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3+\sqrt{5}}.\sqrt{3+\sqrt{5}}}{\sqrt{4+\sqrt{15}}.\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}}\)
=\(\frac{\sqrt{9-\left(\sqrt{5}\right)^2}\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3+\sqrt{5}}}{\sqrt{16-\left(\sqrt{15}\right)^2}.\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4+\sqrt{15}}}\)
\(=\frac{2\left(\sqrt{30+10\sqrt{5}}-\sqrt{6+2\sqrt{5}}\right)}{\sqrt{40+10\sqrt{15}}-\sqrt{24-6\sqrt{15}}}\)
\(=2.\frac{\left(\sqrt{5}+5\right)-\left(\sqrt{5}+1\right)}{\left(\sqrt{15}+5\right)-\left(\sqrt{15}+3\right)}\)
= 4
Rút gọn các biểu thức sau:
a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-3\sqrt{0,4}\right)\) b) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
c) \(2\sqrt{\left(\sqrt{2}-3\right)^2}+\sqrt{2\left(-3\right)^2}-5\sqrt{\left(-1\right)^4}\) d) \(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)
\(0.1\cdot\sqrt{\left(-3\right)^2}\cdot\left[6\sqrt{\left(\frac{1}{3}\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\right]^2\)
\(\left(\frac{3\sqrt{2}+\sqrt{6}}{\sqrt{12}+2}-\frac{\sqrt{54}}{3}\right)\cdot\frac{2}{\sqrt{6}}\)
\(\left(\frac{3+2\sqrt{3}}{\sqrt{3}+2}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\right)\div\left(1\div\frac{1}{\sqrt{2}+\sqrt{3}}\right)\)
\(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)