CMR: (x^2+y^2)-(2xy)^2=(x+y)^2(x-y)^2
CMR: (x^2+y^2)^2 -(2xy)^2 = (x+y)^2(x-y)^2
\(\left(x^2+y^2\right)^2-\left(2xy\right)^2=x^4+2x^2y^2+y^4-4x^2y^2\)
\(=x^4-x^2y^2+y^4=\left(x^2-y^2\right)^2\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
(x2+y2)2-(2xy)2
=(x2+y2+2xy)(x2+y2-2xy)
=(x2+2xy+y2)(x2-2xy+y2)
=(x+y)2(x-y)2
cho x,y > 0 cmr \(\frac{1}{x^4+y^2+2xy^2}+\frac{1}{y^4+x^2+2yx^2}\ge\frac{1}{2xy\left(x+y\right)}\)
CMR : (x-y-z)^2 = x^2 + y^2 +z^2 - 2xy +2yz-2xz
Ta có: \(\left(x-y-z\right)^2\)
= \(\left[\left(x-y\right)-z\right]^2\)
= \(\left(x-y\right)^2-2\left(x-y\right)z+z^2\)
= \(x^2-2xy+y^2-2xz+2yz+z^2\)
= \(x^2+y^2+z^2-2xy+2yz-2xz\left(đpcm\right)\)
CMR
(x-y-z)^2 = x^2 + y^2 + z^2 - 2xy + 2yz - 2zx
\(\left(x-y-z\right)^2=\left[\left(x-y\right)-z\right]^2\)
\(=\left(x-y\right)^2-2z\left(x-y\right)+z^2\)
\(=x^2-2xy+y^2-2xz+2yz+z^2\)
\(=x^2+y^2+z^2-2xy+2yz-2xz\)\(\left(đpcm\right)\)
Áp dụng HĐT (a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca đó bạn.
Ta có: (x - y + z)^2 >= 0
<=> x^2 + y^2 + z^2 - 2xy + 2xz - 2yz >= 0
<=> x^2 + y^2 + z^2 >= 2xy - 2xz + 2yz
cho x,y,z thỏa mãn x^2=yz,y^2=xy,z^2xy cmr x=y=z
Ta có : y2 = xy \(\Rightarrow\)x = y ( 1 )
x2 = yz hay x2 = xz \(\Rightarrow\)x = z ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)x = y = z
Vậy x = y = z
CMR :
a, \(\left(x+y\right)^2=x^2+2xy+y^2\)
b, \(\left(x-y\right)^2=x^2-2xy+y^2\)
Thanks
a) (x + y)2 = (x + y)(x + y) = x2 + xy + xy + y2 = x2 + 2xy + y2 (đpcm)
b) (x - y)2 = (x - y)(x - y) = x2 - xy - xy + y2 = x2 - 2xy + y2 (đpcm)
a) Ta có: \(VT=\left(x+y\right)^2\)
\(=\left(x+y\right)\cdot\left(x+y\right)\)
\(=x^2+xy+yx+y^2\)
\(=x^2+2xy+y^2=VP\)(đpcm)
b) Ta có: \(VP=x^2-2xy+y^2\)
\(=x^2-xy-xy+y^2\)
\(=x\left(x-y\right)-y\left(x-y\right)\)
\(=\left(x-y\right)\cdot\left(x-y\right)\)
\(=\left(x-y\right)^2=VT\)(đpcm)
CMR:
a) x2+y2= (x-y)2+2xy
b) (x+y)2=(x-y)2+4xy
a) \(\left(x-y\right)^2+2xy\)
\(=x^2-2xy+y^2+2xy\)
\(=x^2+y^2\left(đpcm\right)\)
b) \(\left(x-y\right)^2+4xy\)
\(=x^2-2xy+y^2+4xy\)
\(=x^2+2xy+y^2\)
\(=\left(x+y\right)^2\left(đpcm\right)\)
a, Ta có:\(\left(x-y\right)^2=x^2-2xy+y^2\)
\(\Leftrightarrow x^2+y^2=\left(x-y\right)^2+2xy\left(ĐCCM\right)\)
b,Ta có:\(\left(x+y\right)^2=x^2+2xy+y^2\)
\(\Leftrightarrow\left(x+y\right)^2=x^2-2xy+4xy+y^2\)
\(\Leftrightarrow\left(x+y\right)^2=\left(x-y\right)^2+4xy\left(ĐCCM\right)\)
CMR a.(x-2)(2x+2x^2)/(x+1)(4x-x^3)=-2/x+2
b. x^2+y^2+2xy-1/x^2-y^2+1+2x=x+y-1x+1-y
c(x^2+2)^2-4x^2/y(x^2+2)-2xy-(x-1)^2-1
d 3y-2--3xy+2x/1-3x-x^3+3x^2=3y-2/(1-x)^2
CMR :
x^2 + 2xy + 2y^2 + y + 1/ 2 > 0 ( với mọi x; y )
\(x^2+2xy+2y^2+y+\frac{1}{2}\)
\(=x^2+2xy+y^2+y^2+y+\frac{1}{2}\)
\(=\left(x+y\right)^2+y^2+y+\frac{1}{2}\)
Có: \(\left(x+y\right)^2\ge0\)
\(y^2\ge y\ge0\Rightarrow y^2+y\ge0\)
\(\frac{1}{2}>0\)
\(\Rightarrow x^2+2xy+2y^2+y+\frac{1}{2}>0\) với mọi x
xét vế trái: \(x^2+2xy+2y^2+y+\frac{1}{2}\) =\(x^2+2xy+y^2+y^2+y+\frac{1}{2}\)
= \(\left(x^2+2xy+y^2\right)+\left(y^2+y+\frac{1}{2}\right)\)
= \(\left(x+y\right)^2+\left(y^2+2.\frac{1}{2}.y+\frac{1}{4}-\frac{1}{4}+\frac{1}{2}\right)\)
= \(\left(x+y\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{1}{4}\)
vì \(\left(x+y\right)^2>=0\) và \(\left(y+\frac{1}{2}\right)^2>=0\) => \(\left(x+y\right)^2+\left(y+\frac{1}{2}\right)^2>=0\)
mà 1/4 >0 => \(\left(x+y\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{1}{4}>0\)