Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim Tuyền
Xem chi tiết
Nhã Doanh
10 tháng 6 2018 lúc 15:00

\(\left(x^2+y^2\right)^2-\left(2xy\right)^2=x^4+2x^2y^2+y^4-4x^2y^2\)

\(=x^4-x^2y^2+y^4=\left(x^2-y^2\right)^2\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

Ha Hoang Vu Nhat
10 tháng 6 2018 lúc 15:01
https://i.imgur.com/XhM64U0.jpg
tho Thanh
10 tháng 6 2018 lúc 15:08

(x2+y2)2-(2xy)2

=(x2+y2+2xy)(x2+y2-2xy)

=(x2+2xy+y2)(x2-2xy+y2)

=(x+y)2(x-y)2

khoimzx
Xem chi tiết
Bùi Huyền Trang
Xem chi tiết
Hà Linh
29 tháng 6 2017 lúc 20:03

Ta có: \(\left(x-y-z\right)^2\)

= \(\left[\left(x-y\right)-z\right]^2\)

= \(\left(x-y\right)^2-2\left(x-y\right)z+z^2\)

= \(x^2-2xy+y^2-2xz+2yz+z^2\)

= \(x^2+y^2+z^2-2xy+2yz-2xz\left(đpcm\right)\)

Hạ Công Liễu
Xem chi tiết
Phạm Thị Thùy Linh
2 tháng 7 2019 lúc 21:20

\(\left(x-y-z\right)^2=\left[\left(x-y\right)-z\right]^2\)

\(=\left(x-y\right)^2-2z\left(x-y\right)+z^2\)

\(=x^2-2xy+y^2-2xz+2yz+z^2\)

\(=x^2+y^2+z^2-2xy+2yz-2xz\)\(\left(đpcm\right)\)

Hạ Công Liễu
2 tháng 7 2019 lúc 21:21

thanks

Áp dụng HĐT (a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca đó bạn. 

Ta có: (x - y + z)^2 >= 0 
<=> x^2 + y^2 + z^2 - 2xy + 2xz - 2yz >= 0 
<=> x^2 + y^2 + z^2 >= 2xy - 2xz + 2yz

Mai Văn Đạt
Xem chi tiết
Thanh Tùng DZ
22 tháng 11 2017 lúc 19:24

Ta có : y2 = xy \(\Rightarrow\)x = y  ( 1 )

x2 = yz hay x2 = xz \(\Rightarrow\)x = z ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)x = y = z

Vậy x = y = z

Lililala
Xem chi tiết
Lê Trang
9 tháng 8 2020 lúc 18:08

a) (x + y)2 = (x + y)(x + y) = x2 + xy + xy + y2 = x2 + 2xy + y2 (đpcm)

b) (x - y)2 = (x - y)(x - y) = x2 - xy - xy + y2 = x2 - 2xy + y2 (đpcm)

Nguyễn Lê Phước Thịnh
9 tháng 8 2020 lúc 18:09

a) Ta có: \(VT=\left(x+y\right)^2\)

\(=\left(x+y\right)\cdot\left(x+y\right)\)

\(=x^2+xy+yx+y^2\)

\(=x^2+2xy+y^2=VP\)(đpcm)

b) Ta có: \(VP=x^2-2xy+y^2\)

\(=x^2-xy-xy+y^2\)

\(=x\left(x-y\right)-y\left(x-y\right)\)

\(=\left(x-y\right)\cdot\left(x-y\right)\)

\(=\left(x-y\right)^2=VT\)(đpcm)

Hà Ngân Trần
Xem chi tiết
_Guiltykamikk_
19 tháng 8 2018 lúc 20:38

a)  \(\left(x-y\right)^2+2xy\)

\(=x^2-2xy+y^2+2xy\)

\(=x^2+y^2\left(đpcm\right)\)

b)  \(\left(x-y\right)^2+4xy\)

\(=x^2-2xy+y^2+4xy\)

\(=x^2+2xy+y^2\)

\(=\left(x+y\right)^2\left(đpcm\right)\)

Đình Sang Bùi
19 tháng 8 2018 lúc 20:40

a, Ta có:\(\left(x-y\right)^2=x^2-2xy+y^2\)

\(\Leftrightarrow x^2+y^2=\left(x-y\right)^2+2xy\left(ĐCCM\right)\)

b,Ta có:\(\left(x+y\right)^2=x^2+2xy+y^2\)

\(\Leftrightarrow\left(x+y\right)^2=x^2-2xy+4xy+y^2\)

\(\Leftrightarrow\left(x+y\right)^2=\left(x-y\right)^2+4xy\left(ĐCCM\right)\)

Hà Vũ
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Lê Hà Phương
20 tháng 8 2016 lúc 9:07

\(x^2+2xy+2y^2+y+\frac{1}{2}\)

\(=x^2+2xy+y^2+y^2+y+\frac{1}{2}\)

\(=\left(x+y\right)^2+y^2+y+\frac{1}{2}\)

Có: \(\left(x+y\right)^2\ge0\)

\(y^2\ge y\ge0\Rightarrow y^2+y\ge0\)

\(\frac{1}{2}>0\)

\(\Rightarrow x^2+2xy+2y^2+y+\frac{1}{2}>0\) với mọi x

Nguyễn Hà Lan Anh
20 tháng 8 2016 lúc 9:17

xét vế trái:     \(x^2+2xy+2y^2+y+\frac{1}{2}\)    =\(x^2+2xy+y^2+y^2+y+\frac{1}{2}\)

                                                                        = \(\left(x^2+2xy+y^2\right)+\left(y^2+y+\frac{1}{2}\right)\)

                                                                        = \(\left(x+y\right)^2+\left(y^2+2.\frac{1}{2}.y+\frac{1}{4}-\frac{1}{4}+\frac{1}{2}\right)\)

                                                                        =  \(\left(x+y\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{1}{4}\)

  vì \(\left(x+y\right)^2>=0\) và \(\left(y+\frac{1}{2}\right)^2>=0\)  =>   \(\left(x+y\right)^2+\left(y+\frac{1}{2}\right)^2>=0\)

   mà    1/4 >0    =>     \(\left(x+y\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{1}{4}>0\)