\(\left(x^2+y^2\right)^2-\left(2xy\right)^2=x^4+2x^2y^2+y^4-4x^2y^2\)
\(=x^4-x^2y^2+y^4=\left(x^2-y^2\right)^2\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
(x2+y2)2-(2xy)2
=(x2+y2+2xy)(x2+y2-2xy)
=(x2+2xy+y2)(x2-2xy+y2)
=(x+y)2(x-y)2
\(\left(x^2+y^2\right)^2-\left(2xy\right)^2=x^4+2x^2y^2+y^4-4x^2y^2\)
\(=x^4-x^2y^2+y^4=\left(x^2-y^2\right)^2\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
(x2+y2)2-(2xy)2
=(x2+y2+2xy)(x2+y2-2xy)
=(x2+2xy+y2)(x2-2xy+y2)
=(x+y)2(x-y)2
CMR:
a)X^2+y^2=(x+y)- 2xy
b)X^3+y^3=(x+y)^3-3xy(x-y)
c)X^3-y^3=(x-y)^3+3xy(x-y)
A [X-2]3 -X [X+1] [X-1] + 6X [X-3]
B [X-2] [X2 - 2X + 4] [X+2] [X2 + 2X + 4]
C [2X+Y] [4X2 - 2XY + Y2 ] - [2X -Y ] [4X2 + 2XY + Y2 ]
D [X + Y ]3 - [X-Y]3 - 2Y3
E [ X+ Y +Z]2 -2 [X +Y+Z] [X+Y] + [X+Y]
Tìm x,y
a) x2(x+3)+y2(y+5)-(x+y) (x2-xy+y2)=0
b) (2x-y) (4x2+2xy+y2) +(2x+y) (4x2-2xy+y2)-16(x2-y)=32
chứng minh đẳn thức : (x^2+y^2)^2 -(2xy)^2=(x+y)^2 (x+-y)2
(x+2)^2-2x(x+1)+(x-3)(x+3)
(x+2y)(x^2-2xy+4y^2)-(x-2y)(x^2+2xy+4y^2)+2y^3
(3+x)(x^2-9)-(x-3)(x^2+3x+9)
(x-y)^3-(x-y)(x^2+xy+y^2)
Chứng minh đẳng thức
a, (x-y-z)^2=x^2 + y^2+z^2-2xy+2yz-2zx
b, ( x+y-z)^2=x^2+y^2+z^2+2xy-2yz-2zx
c, ( x-y)(x^3+x^2y+xy^2+y^3)=5x(x+1)
d, ( x+y)(x^4-x^3y+x^2y^2-xy^3+y^4)=x^5+y^5
Giúp mk vs ạ mk đang cần
cm (x-y)^2+(x-y)(x+y)+ 2xy = 2y^2
Câu 1: Phân tích đa thức thành nhân tử:
x3 + 7x2 + 2xy(x - 4y) + 28y(x - 2y)
Câu 2: Cho x + y = 1 và x y ≠ 0. CMR:
\(\dfrac{x}{y^3-1}-\dfrac{y}{x^3-1}+\dfrac{2\left(x-y\right)}{x^2y^2+3}=0\)