Tìm x, y biết
a)\(\frac{x}{3}\)và \(\frac{y}{4}\)và x + y = -21
b) 3x = 7y và x - y = -16
tìm x, y, z biết
a) 3x =7y và x - y = -16
b) x/6 = y/5 và x + 2y = 20
c) x/2 = y/-3 = z/5 và 2x + 3y + 5z =6
d) x/2 =y/3 , y/4 = z/5 và x + y -z =10
e) x/3 = y/4 = z/2 và x^3 - y^3 + z^3
a: 3x=7y
=>x/7=y/3=(x-y)/(7-3)=-16/4=-4
=>x=-28; y=-12
b: x/6=y/5
=>x/6=2y/10=(x+2y)/(6+10)=20/16=5/4
=>x=30/4=15/2; y=25/4
c: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{5}=\dfrac{2x+3y+5z}{2\cdot2+3\cdot\left(-3\right)+5\cdot5}=\dfrac{6}{20}=\dfrac{3}{10}\)
=>x=3/5; y=-9/10; z=3/2
d: x/2=y/3
=>x/8=y/12
y/4=z/5
=>y/12=z/15
=>x/8=y/12=z/15
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
=>x=16; y=24; z=30
Tìm 2 số x , y biết
a, x/2 = y/5 và x + y = -21
b, 5x = 3y và x - y = 10
c, x/5 = y/2 và 3x - 2y = 44
d, x/3 = y/16 và 3x - y = 35
giúp mình vs ạ , mình cần gấp, cảm ơn ạ !
Áp dụng t/c dãy tỉ số bằng nhau:
a.
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-21}{7}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-3\right)=-6\\y=5.\left(-3\right)=-15\end{matrix}\right.\)
b.
\(5x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x-y}{3-5}=\dfrac{10}{-2}=-5\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-5\right)=-15\\y=5.\left(-5\right)=-25\end{matrix}\right.\)
c.
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x}{15}=\dfrac{-2y}{-4}=\dfrac{3x-2y}{15-4}=\dfrac{44}{11}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.4=20\\y=2.4=8\end{matrix}\right.\)
d.
\(\dfrac{x}{3}=\dfrac{y}{16}=\dfrac{3x}{9}=\dfrac{-y}{-16}=\dfrac{3x-y}{9-16}=\dfrac{35}{-7}=-5\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-5\right)=-15\\y=16.\left(-5\right)=-80\end{matrix}\right.\)
Bài 1 tìm x,bt
a) x/3=y/5 và x+y = -32
b) x/3 =y/4 và x+y = -21
c) 3x - 7y và x-y = -16
b) 5x -7y và y-x = 18
Tìm x, y, z biết
a/ x : y : z = 2 : 3 : (-4)
và x - y + z = -125
b/ \(\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{6}\)
và 3x - 2y + z = 4
c/ \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
và x + y + z =147
d/ \(2x=3y;5y=7z\)
và 3x - 7y + 5z = 30
a)Vì \(x:y:z=2:3:\left(-4\right)\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y+z}{2-3+-4}=\frac{-125}{-5}=25\)
\(\Rightarrow\begin{cases}\frac{x}{2}=25\\\frac{y}{3}=25\\\frac{z}{-4}=25\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=50\\y=75\\z=-100\end{cases}\)
Vậy x=50;y=75;z=-100
d)Vì 2x=3y\(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)(1)
5y=7z\(\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)(2)
Từ (1) và (2) suy ra:\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\begin{cases}\frac{x}{21}=2\\\frac{y}{14}=2\\\frac{z}{10}=2\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=42\\y=28\\z=20\end{cases}\)
1. Tìm x,y
a) \(\frac{x}{y}=5\) và x + y = 18
b) \(\frac{x}{17}=\frac{y}{2}\) và 2x - y = 64
c) 3x = 7y và x -y = -16
d) x= -2y và x + y = 10
e) \(\frac{x}{20}=\frac{y}{15}\) và y - x = 20
f) \(\frac{x}{-5}=\frac{y}{-6}\) và 3x + 2y = 51
g) \(\frac{x}{y}=\frac{1}{3}\) và \(x-3y=\frac{1}{2}\)
h) \(\frac{x}{3}=\frac{y}{7}\) và x + y = -20
i) x : y = 5 : 6 và 2x - 3y =1
j) \(\frac{x}{4}=\frac{y}{7}\) và x.y =112
k) -2x = 3y và x.y = -54
Bạn lần sau đăng ít thôi nhé :)
a/ \(\frac{x}{y}=5\Rightarrow\frac{x}{5}=\frac{y}{1}=\frac{x+y}{5+1}=\frac{18}{6}=3\)
=> x = 15 , y = 3
b/ \(\frac{x}{17}=\frac{y}{2}\Rightarrow\frac{2x}{34}=\frac{y}{2}=\frac{2x-y}{34-2}=\frac{64}{32}=2\)
=> x = 34, y = 4
c/ \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)
=> x = -28 , y=-12
d,e,f,g,h tương tự.
i/ \(x:y=5:6\Rightarrow\frac{x}{5}=\frac{y}{6}\)
Làm tương tự các câu còn lại.
j/ Đặt \(\frac{x}{4}=\frac{y}{7}=k\) \(\Rightarrow\begin{cases}x=4k\\y=7k\end{cases}\)
xy = 112 => 4k.7k = 112 => \(k^2=4\Rightarrow k=\pm2\)
Nếu k = 2 thì x = 8, y = 14
Nếu k = -2 thì x = -8 , y = -14
k/ \(-2x=3y\Rightarrow\frac{x}{3}=\frac{y}{-2}\)
Làm tương tự câu j.
Tìm x, y, z biết:
a) \(\frac{x-1}{2005}=\frac{3-y}{2006}\) và x - y = 4009
b) 3x = y; 5y = 4z và 6x + 7y + 8z = 456
c) \(\frac{x}{7}=\frac{y}{3}\) và x - 24 = y
a) Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2005}=\frac{3-y}{2006}=\frac{x-1+3-y}{2005+2006}=\frac{2+x-y}{4011}=\frac{2+4009}{4011}=1\)
=> \(\begin{cases}x-1=2005\\3-y=2006\end{cases}\)\(\Leftrightarrow\begin{cases}x=2006\\y=-2003\end{cases}\)
b) Có: \(3x=y\Rightarrow\frac{x}{1}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{12}\)
\(5y=4z\Rightarrow\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
=> \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tc của dãy tỉ số bằng nahu ta có:
\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{6x+7y+8z}{6\cdot4+7\cdot12+8\cdot15}=\frac{456}{228}=2\)
=> \(\begin{cases}x=8\\y=24\\z=30\end{cases}\)
c) Có: \(x-24=y\Rightarrow x-y=24\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\)
=> \(\begin{cases}x=42\\y=18\end{cases}\)
tìm x ; y ; z biết
\(\frac{x}{19}=\frac{y}{21}\)và 2x -y = 34
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{24}\)và 5x + y - 2z = 28
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x + 3y - z =186
\(3x=2y;7y=5z\)và x - y + z = 32
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x + y + x = 49
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và 2x + 3y - z = 50
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz = 810
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)và x2 + y2 + z2 = 14
\(2x=3y;5y=7z\)và 3x + 5z - 7y = 30
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5
=> x-1/2 = 5 => x-1=5 => x=6
y-2/3 = 5 => y-2 = 15 => y =17
z-3/4=5 => z-3=20 => z=23
Đặt x/2=y/3=z/5=k => x=2k,y=3k,z=5k
Ta có: xyz=2k.3k.5k=30k3 = 810 => k3 = 27 => k=3
=> x=2.3=6
y=3.3=9
z=5.3=15
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)
=> \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
=> \(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
=> x2/4 = 1/4 => x2 = 1 => x=\(\pm1\)
y2/16 = 1/4 => y2 = 4 => \(y=\pm2\)
z2/36 = 1/4 => z2 = 9 => \(z=\pm3\)
Tìm x,y,z khi:
a) \(\frac{x-1}{2005}=\frac{3-y}{2006}\) và x-y=4009
b) \(\frac{x}{2}=\frac{y}{3}:\frac{y}{4}=\frac{z}{5}\) và x-y-z=28
c) 3x=y; 5y=4z và 6x+7y+8z=456
a) x-1/2005=3-y/2006
áp dụng tc dãy ts = nhau ta có :
x-1/2005=3-y/2006=(x-1)+(3-y)/2005+2006=x-1+3-y/4011=x-y-1+3/4001=4009-1+3/4011=4011/4011=1
=>x-1/2005=1=>x-1=2005=>x=2006
=>3-y/2006=1=>3-y=2006=>y=-2003
vậy...
c)
3x=y
=>x/1=y/3
=>x/4=y/12
5y=4z
=>y/4=z/5
=>y/12=z/15
=>x/4=y/12=z/15
=>6x/24=7y/84=8z/120
áp dụng tc dãy ts = nhau ta có :
6x/24=7y/84=8z/120 = 6x+7y+8z/24+84+120=456/228=2
=>x/4=2=>x=8
=>y/12=2=>y=24
=>z/15=2=>z=30
vậy ...
Tìm x,y,z biết:
a) x−12005 =3−y2006 và x-y=4009
Tìm x, y,z biết:
a) \(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-1}{5}\)và x+y-z = 50
b) 3x = 2y; 7y = 5z và x+y+z = 92
c) x:y:z = 3:4:5 và \(2x^2+2y^2-3z^2=-100\)
d) \(\frac{x+y}{7}=\frac{x-y}{3}\)và x.y = 250
c)\(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và\(2x^2+2y^2-3z^2=-100\)
đặt\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow\frac{x}{3}=k\Rightarrow x=3k\)
\(\Rightarrow\frac{y}{4}=k\Rightarrow y=4k\)
\(\Rightarrow\frac{z}{5}=k\Rightarrow z=5k\)
mà\(2x^2+2y^2-3z^2=-100\)
thay\(6k^2+8k^2-15k^2=-100\)
\(k^2\left(6+8-15\right)=-100\)
\(k^2.\left(-1\right)=-100\)
\(k^2=100\)
\(\Rightarrow k=\pm10\)
bạn thế vào nha