Tìm nghiệm của đa thức sau : x3+x+5
chứng tỏ rằng đa thức sau không có nghiệm: A(x) = x2 - 4x 7
Tìm nghiệm của đa thức sau: P (x) = x4 x3 x 1
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
chứng tỏ đa thức sau không có nghiệm: A(x)= x2-4x+7
Tìm nghiệm của đa thức sau: P (x) = x4 x3 x 1
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
cho các đa thức sau : P(x)=x3+3x2+3x-2 và Q(x)=-x3-x2-5x+2
a) Tính P(x)+Q(x)
b tính P(x)-Q(x)
c tìm nghiệm của đa thức H(x) biết H(x) = P(x)+Q(x)
a) P(x)+Q(x)=x3+3x2+3x-2-x3-x2-5x+2
=\(2x^2-2x\)
b)P(x)-Q(x)=(x3+3x2+3x-2)-(-x3-x2-5x+2)
=x3+3x2+3x-2+x\(^3\)+x\(^2\)+5x-2
=\(2x^3+4x^2+8x-4\)
c) Ta có H(x)=0
\(\Rightarrow\)\(2x^2-2x\)=0
\(\Rightarrow\)2x(x-1)=0
\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy nghiệm của đa thức H(x) là 0;1
Trong các đa thức sau, đa thức có đúng một nghiệm bằng -5 là
A. 5- x B. x3- 25 C. x+5 D. x(x-5)
Thay `x=-5`
`A. `
`5-(-5)=5+5=10`
`->` \(\text{x=-5 không phải là nghiệm của đa thức (k t/m)}\)
`B.`
`(-5)^3-25 = -125-25 = -150`
`->`\(\text{x=-5 không phải là nghiệm của đa thức (k t/m)}\)
`C.`
`(-5)+5=0`
`->`\(\text{x=-5 là nghiệm của đa thức (t/m)}\)
`D.`
`(-5)*(-5-5) = (-5)*(-25)=125`
`->`\(\text{x=-5 không phải là nghiệm của đa thức (k t/m)}\)
Xét các đáp án trên `-> C.`
f(x)=x3−3x2+2x−5+x2,g(x)=−x3−5x+3x2+3x+4.a.thu gọn các đa thức ên và sắp xếp theo lũy thừa giảm dần của biến.b) tính h(x)+g(x)và q(x)-2.g(x) c) tìm nghiệm của đa thức h(x)
a: f(x)=x^3-2x^2+2x-5
g(x)=-x^3+3x^2-2x+4
b: Sửa đề: h(x)=f(x)+g(x)
h(x)=x^3-2x^2+2x-5-x^3+3x^2-2x+4=x^2-1
c: h(x)=0
=>x^2-1=0
=>x=1 hoặc x=-1
cho hai đa thức sau:
f(x) = (x-1)(x+2)
g(x) = x3+ax2=bx=2
xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
`f(x) = (x-1)(x+2) = 0`.
`=>` \(\left[ \begin{array}{l}x=1\\x=-2\end{array} \right.\)
Với `x = 1 => g(x) = 1 + a + b + 2 = 0`.
`<=> a + b = -3`.
Với `x = -2 => g(x) = -8 + 4a - 2b + 2 = 0`.
`<=> 4a - 2b = 6`.
`<=> 2a - b = 6`.
`=> ( a + b) + (2a - b) = -3 + 6`.
`=> 3a = 3`.
`=> a = 1.`
`=> b = -4`.
Vậy `(a,b) = {(1, -4)}`.
Cho các đa thức sau: P(x) = x3 + 3x2 + 3x - 2 và
a) Tính P(x) + Q(x)
b) Tính P(x) - Q(x)
c) Tìm nghiệm của đa thức H(x) biết H(x) = P(x) + Q(x)
bn sửa lại câu hỏi nha hih như thiếu đa thức Q(x)
Cho hai đa thức f(x)= x5 + x3 -4x- x5 +3x +7 và g(x)= 3x2-x3+8x-3x2-14. Tính f(x)+g(x) và tìm nghiệm của đa thức f(x)+g(x).
\(f\left(x\right)=x^3-x+7\)
\(g\left(x\right)=-x^3+8x-14\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=7x-7\)
Nghiệm của đa thức \(f\left(x\right)+g\left(x\right)=0\Rightarrow7x-7=0\)
\(\Rightarrow x=1\)
Bài 5: (1,0đ)
Cho hai đa thức sau:
f(x) = ( x-1)(x+2)
g(x) = x3 + ax2 + bx + 2
Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x).
Ta có f(x)=0 <=> \(\left(x-1\right)\left(x+2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên 1 và -2 là nghiệm của đa thức g(x)
+Thay x=1, ta có: \(g\left(1\right)=1^3+a.1^2+b.1+2=0\Leftrightarrow1+a+b+2=0\Leftrightarrow a+b=-3\left(1\right)\)
+Thay x=-2, ta có:
\(g\left(-2\right)=\left(-2\right)^3+a.2^2+b.\left(-2\right)+2=0\Leftrightarrow-8+4a-2b+2=0\Leftrightarrow4a-2b=6\left(2\right)\)
Từ (1) và (2) ta có hệ pt: \(\left\{{}\begin{matrix}a+b=-3\\4a-2b=6\end{matrix}\right.\)
Giải hệ pt, ta được: a=0, b=-3.
Ta có : f(x) = 0
⇔ ( x-1)(x+2) = 0
⇔ \(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên x =1 hoặc x = -2 là nghiệm của g(x)
Thay x = 1 vào g(x) = 0
⇔ 13 + a.12 + b.1 + 2 = 0
⇔ 1 + a + b + 2 = 0
⇔ a + b = -3 (1)
Thay x = -2 vào g(x) = 0
⇔ (-2)3 + a.(-2)2 + b.(-2) + 2 = 0
⇔ -8 + a.4 - 2.b + 2 = 0
⇔ 4a - 2b = 6
⇔ 2.(2a - b ) = 6
⇔ 2a - b = 3 (2)
Từ (1) và (2) ⇒ \(\left\{{}\begin{matrix}a+b=-3\\2a-b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=0\\b=-3-a\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\)
Để f (x) có nghiệm thì : f (x) = 0
=> (x−1)(x+2)=0
\(\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy x = 1 và x = −2 là nghiệm của đa thức f (x)
Do nghiệm của f (x) cũng là nghiệm của g (x) nên x = 1 và x = −2 là nghiệm của g (x)
⇒g(1)=13+a⋅12+b⋅1+2=0
⇒1+a+b+2=0
⇒3+a+b=0
⇒b=−3−a (1)
@)
g(−2)=(−2)3+a⋅(−2)2+b⋅(−2)+2=0
⇒−8+4a−2b+2=0
⇒2⋅(−4)+2a+2a−2b+2=0
⇒2⋅(−4+a+a−b+1)=0
⇒(−3+2a−b)=0
=> 2a − b = 3 (2)
thay (1) vao (2) ta dc
2a−(−3−a)=3
⇒a=0
Do 2a−b=3
⇒b=−3Vậy a = 0 ; b = −3
Cho hai đa thức sau: f(x) = (x – 1)(x + 2) và g(x) = x3 + ax2 + bx + 2 Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x).
+) Để f (x) có nghiệm thì : f (x) = 0
=> \(\left(x-1\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy x = 1 và x = \(-2\) là nghiệm của đa thức f (x)
Do nghiệm của f (x) cũng là nghiệm của g (x) nên x = 1 và x = \(-2\) là nghiệm của g (x)
\(\Rightarrow g\left(1\right)=1^3+a\cdot1^2+b\cdot1+2=0\\ \Rightarrow1+a+b+2=0\\ \Rightarrow3+a+b=0\\ \Rightarrow b=-3-a\left(1\right)\)
+) \(g\left(-2\right)=\left(-2\right)^3+a\cdot\left(-2\right)^2+b\cdot\left(-2\right)+2=0\\ \Rightarrow-8+4a-2b+2=0\\ \Rightarrow2\cdot\left(-4\right)+2a+2a-2b+2=0\\ \Rightarrow2\cdot\left(-4+a+a-b+1\right)=0\\ \Rightarrow2\cdot\left(-3+2a-b\right)=0\\ \Rightarrow\left(-3+2a-b\right)=0\)
=> 2a \(-\) b = 3 \(\left(2\right)\)
+) Thay \(\left(1\right)vào\left(2\right)\) ta được :
\(2a-\left(-3-a\right)=3\\ \Rightarrow2a+3+a=3\\ \Rightarrow3a=3-3\\ \Rightarrow3a=0\\ \Rightarrow a=0\)
Do \(2a-b=3 \Rightarrow2\cdot0-b=3\Rightarrow0-b=3\Rightarrow b=-3\)
Vậy a = 0 ; b = \(-\)3