Cho đa thức D(x)=-2x\(^2\)+ax-7a+3; tìm a biết rằng D(x)có nghiệm là -1
ai giải nhanh bài này mình tick cho nha
Bài 1 : a) Cho đa thức B(y) = my - 3 . Tìm m để B(-1) = 2
b) Cho đa thức D(x) = \(-2x^2\) + ax - 7a + 3 . Tìm a biết rằng D(x) có nghiệm là -1
Bài 2 : chứng minh rằng các đa thức sau không có nghiệm
a) \(x^2+x+1\)
b) \(x^2+2x+2\)
c) \(-x^2+2x-3\)
Bài 1:
a)Có \(B\left(y\right)=m.\left(-1\right)-3=2\)
\(m.\left(-1\right)\) \(=2+3\)
\(m.\left(-1\right)\) \(=5\)
\(m\) \(=5:\left(-1\right)\)
\(m\) \(=-5\).
b)Có \(-1\) là nghiệm của đa thức D(x).
=>\(D\left(x\right)=\left(-2\right).\left(-1\right)^2+\left(-1\right)a-7a+3=0\)
<=> \(\left(-2\right)-a+7a+3=0\)
<=> \(\left(-2\right)-a+7a=-3\)
<=> \(-a+7a=-2-3\)
<=> \(-a+7a=-5\)
<=> \(\left(-1+7\right)a=-5\)
<=> \(6a=-5\)
<=> a= \(\frac{-5}{6}\)
B2;
a)\(x^2+x+1\)
=(\(x^2+0,5x\))+(0,5x+0,25)+0,75
=x(x+0,25)+0,5(x+0,5)+0,75
=\(\left(x+0,5\right)^2\)+0,75.
Mà \(\left(x+0,5\right)^2\ge0\)
=>\(x^2+x+1\) không có nghiệm.
b)\(x^2+2x+2\)
=\(x^2+x+x+1+1\)
=\(\left(x^2+x\right)+\left(x+1\right)+1\)
=\(x\left(x+1\right)+\left(x+1\right)\)
=\(\left(x+1\right)\left(x+1\right)+1\)
=\(\left(x+1\right)^2+1\)
Mà \(\left(x+1\right)^2\ge0\)
=> \(x^2+2x+2\) không có nghiệm.
c)\(-x^2+2x-3\)
=\(-\left(x^2-2x+3\right)\)
=\(-\left(x^2-2.x.1+2+1\right)\)
=\(-\left[\left(x-1\right)^2+2\right]\)
=\(-\left(x-1\right)^2-2\)
Mà \(\left(x-1\right)^2\le0\)
=> \(-x^2+2x-3\) không có nghiệm.
Bài 2:
a) x2 + x + 1
Ta có: x2 > hoặc =0 với mọi x
=> x2 + x + 1 > 0 với mọi x, tức là ≠ 0 với mọi x.
Vậy đa thức x2 + x + 1 không có nghiệm.
b) x2 + 2x + 2
Ta có: x2 > hoặc =0 với mọi x
=> x2 + 2x + 2 > 0 với mọi x, tức là ≠ 0 với mọi x.
Vậy đa thức x2 + 2x + 2 không có nghiệm.
Mình làm câu a) và câu b) thôi nhé, còn câu c) mình chưa biết cách chứng minh đa thức < 0.
Chúc bạn học tốt!
Bài 2: Tìm a,b để :
a. Đa thức 3x^3 + 2x2 -7x + a chia hết cho đa thức 3x-1b. ax^2 + 5x^4 chia hết cho (x-1)^2c. Đa thức 2x^2 + ã +1 chia x-3 được d là 4d. 2x^3 - x^2 + ax + b chia hết cho x^2 -1Hộ aka: 3x^3+2x^2-7x+a chia hêt cho 3x-1
=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1
=>a-2=0
=>a=2
c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4
=>3a+19=4
=>3a=-15
=>a=-5
d: 2x^3-x^2+ax+b chiahêt cho x^2-1
=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1
=>a+2=0 và b-1=0
=>a=-2 và b=1
Xác định a; b để:
a) Đa thức f(x)=\(x^4-3x^3+x^2+ax+b\)⋮cho đa thức g(x)=\(x^2-3x+2\)
b) Đa thức f(x)=\(2x^3+ax+b\) ⋮cho đa thức g(x)=x+1
c) Đa thức f(x)=\(2x^4+ax^2+x+b\) ⋮cho đa thức g(x)=x+2 và ⋮cho h(x)=\(x^2-1\)dư x
d) Đa thức f(x)=\(ax^3+bx^2+5x-50\)⋮cho đa thức g(x)=\(x^2+3x-10\)
Sử dụng định lý Bezout:
a/ \(g\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(f\left(x\right)⋮g\left(x\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(2\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
b/ \(g\left(x\right)=0\Rightarrow x=-1\)
\(\Rightarrow f\left(-1\right)=0\Rightarrow-a+b=2\Rightarrow b=a+2\)
Tất cả các đa thức có dạng \(f\left(x\right)=2x^3+ax+a+2\) đều chia hết \(g\left(x\right)=x+1\) với mọi a
c/ \(g\left(x\right)=0\Rightarrow x=-2\Rightarrow f\left(-2\right)=0\Rightarrow4a+b=-30\)
\(2x^4+ax^2+x+b=\left(x^2-1\right).Q\left(x\right)+x\)
Thay \(x=1\Rightarrow a+b=-2\)
\(\Rightarrow\left\{{}\begin{matrix}4a+b=-30\\a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{28}{3}\\b=\frac{22}{3}\end{matrix}\right.\)
d/ Tương tự: \(\left\{{}\begin{matrix}f\left(2\right)=8a+4b-40=0\\f\left(-5\right)=-125a+25b-75=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\\b=\end{matrix}\right.\)
Cho đa thức \(f\left(x\right)=ax^3+bx^2+cx+d\) (a,b,c,d là các số nguyên) . Biết 7a+b+c = 0 . Chứng minh rằng f(3) . f(-2) là số chính phương
Xác định a; b để:
a) Đa thức f(x)=\(x^4-3x^3+x^2+ax+b\)⋮cho đa thức g(x)=\(x^2-3x+2\)
b) Đa thức f(x)=\(2x^3+ax+b\) ⋮cho đa thức g(x)=x+1
c) Đa thức f(x)=\(2x^4+ax^2+x+b\) ⋮cho đa thức g(x)=x+2 và ⋮cho h(x)=\(x^2-1\)dư x
d) Đa thức f(x)=\(ax^3+bx^2+5x-50\)⋮cho đa thức g(x)=\(x^2+3x-10\)
a) Ta có: \(g\left(x\right)=x^2-3x+2\)
\(=x^2-x-2x+2\)
\(=x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(x-2\right)\)
Vì \(f\left(x\right)⋮g\left(x\right)\)
\(\Rightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)q\left(x\right)\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=\left(1-1\right)\left(1-2\right)q\left(1\right)=0\left(1\right)\\f\left(2\right)=\left(1-2\right)\left(2-2\right)q\left(2\right)=0\left(2\right)\end{cases}}\)
Từ \(\left(1\right)\Leftrightarrow1^4-3.1^3+1^2+a+b=0\)
\(\Leftrightarrow-1+a+b=0\)
\(\Leftrightarrow a+b=1\left(3\right)\)
Từ \(\left(2\right)\Leftrightarrow2^4-3.2^3+2^2+2a+b=0\)
\(\Leftrightarrow-4+2a+b=0\)
\(\Leftrightarrow2a+b=4\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\Rightarrow\hept{\begin{cases}a+b=1\\2a+b=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=3\\b=-2\end{cases}}}\)
Vậy a=3 và b=-2 để \(f\left(x\right)⋮g\left(x\right)\)
Các phần sau tương tự
bài 1 : tìm a và b để cho đa thức A chia hết cho đa thức B khi:
A=4x ³+15x ²+24x+3+a và B=x ²+4x+7
A=x mũ 4-9x ³+21x ²+ax+b vả B=x ²-3x+2
a: \(\Leftrightarrow4x^3+16x^2+28x-x^2-4x-7+10+a⋮x^2+4x+7\)
hay a=-10
1 Cho đa thức D(x) = -2x2 + ax -7a + 3. Tìm a biết rằng D(x) có nghiệm là -1
2 Cho các đa thức A(x) = 5x3 - 7x2 + x + 7; B(x) = 7x3 - 7x2 + 2x + 5
a Tính A(-1); B(-1/2); C(0)
b Tính M(x) = A(x) - B(x) + C(x); N(x) = 3C(x) - 2A(x)
c Tìm bậc và nghiệm của M(x)
Giúp mình với sắp thi rồi!!!
Câu 1 :
D(x) có nghiệm là -1
⇒ D(-1) = -2. (-1)2 + a. 1 - 7a + 3 = 0
⇒-2 + a - 7a + 3 = 0
⇒(-2 + 3) + ( a -7a) = 0
⇒1 - 6a = 0
⇒ 6a = 1 ⇒ a = 1/6
Câu 2 :
a. Thay x = -1 vào đa thức A(x) ta được :
A(-1) = 5.(-1)3 - 7.(-1)2 + (-1) + 7
A(-1) = -5 - 7 - 1 + 7
A(-1) = -6
Vậy giá trị của đa thức A(x) = -6 tại x = -1
Thay x = -1/2 vào đa thức B(x) ta được :
B(-1) = 7. (-1/2)3 - 7. (-1/2)2 + 2. (-1/2) + 5
B(-1) = 7. (-1/8) - 7. 1/4 - 1 + 5
B(-1) = -21/8 + 4
Phần b,c tớ chưa lm đc vì k có đa thức C
giúp mình với:
tìm hệ số a sao cho đa thức: 2x2-ax+5 chia cho đa thức 2x-3 có số dư bằng 2
tìm hệ số a và b sao cho đa thức: ax3+bx-24 chia hết cho (x+1)(x+3)
a) 2x-3=0 <=> x=\(\dfrac{3}{2}\) để \(\left(2x^2-ax+5\right):\left(2x-3\right)\) thì \(2x^2-ax+5=2\)
Thay x= \(\dfrac{3}{2}\) vào \(2x^2-ax+5\), ta được:
\(\dfrac{9}{2}-\dfrac{3}{2}a+5=2\)
<=> \(-\dfrac{3}{2}a=2-5-\dfrac{9}{2}\) <=>a=5
lười quá ~~
bài 1
vì đa thức bị chia bậc 2, đa thức chia bậc nhất
=> đa thức thương sẽ có dạng bx+c
theo đề ta có
\(2x^2-ax+5=\left(bx+c\right)\left(2x-3\right)+2\\ < =>2x^2-ax+5=2bx^2-3bx+2cx-3c+2\\ < =>2x^2-ax+5=2bx^2-x\left(2c-3b\right)-3c+2\\ < =>\left\{{}\begin{matrix}2x^2=2bx^2\\ax=x\left(2c-3b\right)\\5=2-3c\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}b=1\\c=-1\\a=2c-3b\end{matrix}\right.\\ =>a=2\left(-1\right)-3.1\\ =>a=-5\)
vậy a = -5
bài 2 ko hiểu sao mình ko làm được, chắc sai ở đâu đợi mình làm lại nhé
cho đa thức f(x)=ax^2+bx+c
a, tính f(10) và f(-3) theo a,b,c
b, với 7a+b=0. CMR f(10)=f(-3)