\(\sqrt{10+2\sqrt{6+2\sqrt{10+2\sqrt{15}}}}\)
1)\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
2)\(\sqrt{35+12\sqrt{6}}-\sqrt{35-12\sqrt{6}}\)
3)\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
`1)A=sqrt{4+sqrt{10+2sqrt5}}+sqrt{4-sqrt{10+2sqrt5}}`
`<=>A^2=4+sqrt{10+2sqrt5}+4-sqrt{10+2sqrt5}+2sqrt{16-10-2sqrt5}`
`<=>A^2=8+2sqrt{6-2sqrt5}`
`<=>A^2=8+2sqrt{(sqrt5-1)^2}`
`<=>A^2=8+2(sqrt5-1)`
`<=>A^2=6+2sqrt5=(sqrt5+1)^2`
`<=>A=sqrt5+1(do \ A>0)`
`b)B=sqrt{35+12sqrt6}-sqrt{35-12sqrt6}`
Vì `35+12sqrt6>35-12sqrt6`
`=>B>0`
`B^2=35+12sqrt6+35-12sqrt6-2sqrt{35^2-(12sqrt6)^2}`
`<=>B^2=70-2sqrt{361}`
`<=>B^2=70-2sqrt{19^2}=70-38=32`
`<=>B=sqrt{32}=4sqrt2(do \ B>0)`
`3)(4+sqrt{15})(sqrt{10}-sqrt6)sqrt{4-sqrt{15}}`
`=sqrt{4+sqrt{15}}.sqrt{4-sqrt{15}}.sqrt{4+sqrt{15}}(sqrt{10}-sqrt6)`
`=sqrt{16-15}.sqrt2(sqrt5-sqrt3).sqrt{4+sqrt{15}}`
`=sqrt{8+2sqrt{15}}(sqrt5-sqrt3)`
`=sqrt{5+2sqrt{5.3}+3}(sqrt5-sqrt3)`
`=sqrt{(sqrt5+sqrt3)^2}(sqrt5-sqrt3)`
`=(sqrt5+sqrt3)(sqrt5-sqrt3)`
`=5-3=2`
nhờ anh chị giải giúp em !
10)\(\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)
11)\(\sqrt{10-2\sqrt{6}+2\sqrt{10}-2\sqrt{15}}\)
\(\dfrac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}-\sqrt{6}}\)
\(\dfrac{2\sqrt{15}-2\sqrt{10}-3+\sqrt{6}}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
\(=\dfrac{2\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\sqrt{5}\left(1-\sqrt{2}\right)-\sqrt{3}\left(1-\sqrt{2}\right)}\)
\(=\dfrac{\sqrt{3}-\sqrt{2}}{1-\sqrt{2}}=-\sqrt{3}-\sqrt{6}+\sqrt{2}+2\)
Rút gọn căn thức :
A = \(\frac{\sqrt{10}+2\sqrt{6}+\sqrt{10}.\sqrt{4+\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)\(\frac{\sqrt{10}+2\sqrt{6}+\sqrt{10}.\sqrt{4+\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
Bài 1 : rút gọn
1, \(\sqrt{6+2\sqrt{5}}\) 2, \(\sqrt{15-6\sqrt{6}}-\sqrt{10-4\sqrt{6}}\)
3. \(\sqrt{31-10\sqrt{6}}-\sqrt{\left(3-2\sqrt{6}\right)^2}\)
1.\(\sqrt{1+2\sqrt{5}+5}=\sqrt{\left(1+\sqrt{5}\right)^2}=1+\sqrt{5}\)
2.\(\sqrt{10-4\sqrt{6}}=\sqrt{4-4\sqrt{6}+6}=\sqrt{\left(2-\sqrt{6}\right)^2}=\left|2-\sqrt{6}\right|=\sqrt{6}-2\) \(\sqrt{15-6\sqrt{6}}=\sqrt{9+6\sqrt{6}+6}=\sqrt{\left(3+\sqrt{6}\right)^2}=3+\sqrt{6}\)
=>\(\sqrt{15-6\sqrt{6}}-\sqrt{10-4\sqrt{6}}\)=\(3+\sqrt{6}-\sqrt{6}+2\)=5
3. Tương tự bằng :\(8-3\sqrt{6}\)
1) \(\sqrt{6+2\sqrt{5}}\) = \(\sqrt{1+2.1.\sqrt{5}+\sqrt{5}^2}\) = \(\sqrt{\left(1+\sqrt{5}\right)^2}\)
2) \(\sqrt{15-6\sqrt{6}}-\sqrt{10-4\sqrt{6}}\)
= \(\sqrt{3^2-2.3.\sqrt{6}+\sqrt{6}^2}\) - \(\sqrt{2^2.2.2.\sqrt{6}+\sqrt{6}^2}\)
= \(\sqrt{\left(3+\sqrt{6}\right)^2}\) - \(\sqrt{\left(2+\sqrt{6}\right)^2}\)
= \(\left|3+\sqrt{6}\right|\) - \(\left|2+\sqrt{6}\right|\)
= 3 + \(\sqrt{6}\) - 2 + \(\sqrt{6}\)
= 1 + 2\(\sqrt{6}\)
3) \(\sqrt{31-10\sqrt{6}}-\sqrt{\left(3-2\sqrt{6}\right)^2}\)
= \(\sqrt{5^2-2.5.\sqrt{6}+\sqrt{6}^2}\) - \(\sqrt{\left(3-2\sqrt{6}\right)^2}\)
= \(\sqrt{\left(5-\sqrt{6}\right)^2}\) - \(\sqrt{\left(3-2\sqrt{6}\right)^2}\)
= \(\left|5-\sqrt{6}\right|\) - \(\left|3-2\sqrt{6}\right|\)
= 5 - \(\sqrt{6}-3-2\sqrt{6}\)
= 2 - 3\(\sqrt{6}\)
Chúc bạn học tốt
rút gọn
\(\dfrac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{15}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
tín https://www.facebook.com/docbaoonlinethayban/videos/467035000526358/?v=467035000526358 Cả nhà tải ngay bằng link dưới đây nhé. https://giaingay.com.vn/downapp.html
\(\sqrt{10+2\sqrt{10}+2\sqrt{15}+2\sqrt{6}}\)
\(\left(3-\sqrt{2}\right)\sqrt{7+4\sqrt{3}}\)
\(\sqrt{10+2\sqrt{10}+2\sqrt{15}+2\sqrt{6}}\\ =\sqrt{\sqrt{10}.\sqrt{10}+2\sqrt{10}+2\sqrt{3}.\sqrt{5}+2\sqrt{3}.\sqrt{2}}\\ =\sqrt{\sqrt{10}\left(\sqrt{10}+2\right)+\sqrt{3}\left(2\sqrt{5}+2\sqrt{2}\right)}\\ =\sqrt{\sqrt{10}\left[\sqrt{2}\left(\sqrt{5}+\sqrt{2}\right)\right]+\sqrt{3}\left[2\left(\sqrt{5}+\sqrt{2}\right)\right]}\)
\(=\sqrt{\sqrt{20}\left(\sqrt{5}+\sqrt{2}\right)+2\sqrt{3}\left(\sqrt{5}+\sqrt{2}\right)}\\ =\sqrt{\left(\sqrt{5}+\sqrt{2}\right)\left(2\sqrt{5}+2\sqrt{3}\right)}\)
\(=\sqrt{\sqrt{5}+\sqrt{2}}.\sqrt{2}.\sqrt{\sqrt{5}+\sqrt{3}}\)
=====================
\(\left(3-\sqrt{2}\right)\sqrt{7+4\sqrt{3}}\\ =\left(3-\sqrt{2}\right)\sqrt{\sqrt{3^2}+2.2\sqrt{3}+2^2}\\ =\left(3-\sqrt{2}\right)\sqrt{\left(\sqrt{3}+2\right)^2}\\ =\left(3-\sqrt{2}\right)\left|\sqrt{3}+2\right|\\ =\left(3-\sqrt{2}\right)\left(\sqrt{3}+2\right)\\ =3\sqrt{3}+6-\sqrt{6}-2\sqrt{2}\)
Rút gọn :
\(A=\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
\(B=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{5}}}}\)
\(C=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(D=\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
\(E=\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
câu E dễ nhất nên mình làm trước , các câu còn lại làm tương tự ( biến đổi thành hằng đẳng thức rồi rút gọn ) :
\(E=\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{24-2.2\sqrt{6}.3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3\) ( vì \(3-\sqrt{6}>0;2\sqrt{6}-3>0\) )
\(=\sqrt{6}\)
A = \(\dfrac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
A = \(\dfrac{\sqrt{3}+\sqrt{\left(\sqrt{2}+3\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)
A = \(\dfrac{\sqrt{3}+\sqrt{2}+3-\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{2}+\sqrt{5}+1-\left(\sqrt{5}+\sqrt{2}\right)}\)
A = \(\dfrac{\sqrt{3}+\sqrt{2}+3-\sqrt{3}-\sqrt{2}}{\sqrt{2}+\sqrt{5}+1-\sqrt{5}-\sqrt{2}}\) = \(\dfrac{3}{1}\) = \(3\)
C = \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
C = \(\left(4+\sqrt{15}\right).\left(\sqrt{40-10\sqrt{15}}-\sqrt{24-6\sqrt{15}}\right)\)
C = \(\left(4+\sqrt{15}\right)\left(\sqrt{\left(5-\sqrt{15}\right)^2}-\sqrt{\left(\sqrt{15}-3\right)^2}\right)\)
C = \(\left(4+\sqrt{15}\right)\left(5-\sqrt{15}-\left(\sqrt{15}-3\right)\right)\)
C = \(\left(4+\sqrt{15}\right)\left(5-\sqrt{15}-\sqrt{15}+3\right)\)
C = \(\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
C = \(32-8\sqrt{15}+8\sqrt{15}-30=2\)
D = \(\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
D = \(\left(\sqrt{30-10\sqrt{5}}-\sqrt{6-2\sqrt{5}}\right)\left(3+\sqrt{5}\right)\)
D = \(\left(\sqrt{\left(5-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\right)\left(3+\sqrt{5}\right)\)
D = \(\left(5-\sqrt{5}-\left(\sqrt{5}-1\right)\right)\left(3+\sqrt{5}\right)\)
D = \(\left(5-\sqrt{5}-\sqrt{5}+1\right)\left(3+\sqrt{5}\right)\)
D = \(\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)\)
D = \(18+6\sqrt{5}-6\sqrt{5}-10=8\)
E = \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{5}}\)
E = \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}-2\sqrt{2}\right)^2}\)
E = \(3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)
a)\(\sqrt{\left(2\sqrt{2}-3\right)^2+\sqrt{15}}\)
b)\(\sqrt{\left(\sqrt{10}-3\right)}^2+\sqrt{\left(\sqrt{10}-4\right)^2}\)
c)\(11+6\sqrt{2}=\left(3+\sqrt{2}\right)^2\)
d)\(\sqrt{11}+6\sqrt{2}+\sqrt{11-6\sqrt{2}=6}\)
b: =căn 10-3+4-căn 10=1
a: \(=\sqrt{11-4\sqrt{6}+\sqrt{15}}\)