Giải pt:
(x+3)(x+4)(x+5)(x+6)=0
Giải pt
a) x2 -x-6 >0
b) x+4/5 -x+5 ≥ x+3/5
a) \(x^2-x-6>0\)
\(\Leftrightarrow x^2-3x+2x-6>0\)
\(\Leftrightarrow\left(x^2-3x\right)+\left(2x-6\right)>0\)
\(\Leftrightarrow x.\left(x-3\right)+2.\left(x-3\right)>0\)
\(\Leftrightarrow\left(x-3\right).\left(x+2\right)>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3>0\\x+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0+3\\x>0-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>3\\x>-2\end{matrix}\right.\)
Vậy tập hợp nghiệm của bất phương trình \(x^2-x-6>0\) là: \(S=\left\{x>3;x>-2\right\}.\)
Chúc bạn học tốt!
GIẢI PT SAU:
\(\sqrt{3x-3}-\sqrt{5-x}=\sqrt{2x-4}\)
\(x^2-6x+9=4\sqrt{x^2-6x+6}\)
\(x^2-x+8-4\sqrt{x^2-x+4}=0\)
b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)
\(\Rightarrow a^2+3-4a=0\)
=> (a - 3).(a - 1) = 0
=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)
Bình phương lên giải tiếp nhé!
c) Tương tư câu b nhé
Giải pt:
\(x^{10}-x^6+x^2-2x+5=0\)
\(7x^8-x^5+x^2-x+3=0\)
1,Giải PT sau
a, (5x+3)(x2+4)(x-4)=0
b, (4x-1)(x-3)-(x-2)(5x+2)=0
c, (x+3)(x-5)+(x+3)(3x-4)=0
d, (x+6)(3x-1)+x2-36=0
e, 0,75x(x+5)=(x+5)(3-1,25x)
a)
\(\left(5x+3\right)\cdot\left(x^2+4\right)\cdot\left(x-4\right)=0\\ \Rightarrow\left[{}\begin{matrix}5x+3=0\\x-4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\frac{3}{5}\\x=4\end{matrix}\right.\)
b)
\(\left(4x-1\right)\cdot\left(x-3\right)-\left(x-2\right)\cdot\left(5x+2\right)=0\\ \Leftrightarrow4x^2-12x-x+3-5x^2-2x+10x+4=0\\ \Leftrightarrow-x^2-5x+7=0\\ \Rightarrow x=\left[{}\begin{matrix}-\frac{5+\sqrt{53}}{2}\\-\frac{5-\sqrt{53}}{2}\end{matrix}\right.\)
c)
\(\left(x+3\right)\cdot\left(x-5\right)+\left(x+3\right)\cdot\left(3x-4\right)=0\\ \Leftrightarrow\left(x+3\right)\cdot\left(x-5+3x-4\right)=0\\ \Leftrightarrow\left(x+3\right)\cdot\left(4x-9\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\4x-9=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\x=\frac{9}{4}\end{matrix}\right.\)
d)
\(\left(x+6\right)\cdot\left(3x-1\right)+x^2-36=0\\ \Leftrightarrow\left(x+6\right)\cdot\left(3x-1\right)+\left(x^2-36\right)=0\\ \Leftrightarrow\left(x+6\right)\cdot\left(3x-1\right)+\left(x+6\right)\cdot\left(x-6\right)=0\\ \Leftrightarrow\left(x+6\right)\cdot\left(3x-1+x-6\right)=0\\ \Leftrightarrow\left(x+6\right)\cdot\left(4x-7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+6=0\\4x-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-6\\x=\frac{7}{4}\end{matrix}\right.\)
e)
\(0.75x\cdot\left(x+5\right)=\left(x+5\right)\cdot\left(3-1.25x\right)\\ \Leftrightarrow0.75x\cdot\left(x+5\right)-\left(x+5\right)\cdot\left(3-1.25x\right)=0\\ \Leftrightarrow\left(x+5\right)\cdot\left(0.75x-3+1.25x\right)=0\\ \Leftrightarrow\left(x+5\right)\cdot\left(2x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+5=0\\2x-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-5\\x=\frac{3}{2}\end{matrix}\right.\)
giải pt: x^5 + 2x^4 +3x^3 + 3x^2 + 2x +1=0
giải pt: x^4 + 3x^3 - 2x^2 +x - 3=0
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
(1) giải pt quy về \(ax^2+bx+c=0\)
1) \(x^2=3x\) 2) \(x^2-3x=4\)
3) \(x^4-5x^2+6=0\) 4) \(x^3=9x\)
5) \(\left(x+2\right)\left(x-3\right)=x^2-4\) 6) \(\dfrac{x+11}{x^2-1}-\dfrac{x-1}{x+1}=\dfrac{2\left(x+7\right)}{x+1}\)
giúp mk vs mk cần gấp
1)
<=> \(x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
x= 0
x = 3
2) <=> \(x\left(x-3\right)=4\)
=> \(x=\dfrac{4}{x}+3\)
\(2,x^2-3x=4\)
\(\Leftrightarrow x^2-3x-4=0\)
\(\Delta=b^2-4ac=\left(-3\right)^2-4\left(-4\right)=25>0\)
\(\Rightarrow\)Pt có 2 nghiệm pb
\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3+5}{2}=4\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-3-5}{2}=-1\end{matrix}\right.\)
Vậy \(S=\left\{4;-1\right\}\)
\(3,x^4-5x^2+6=0\)
Đặt \(t=x^2\left(t\ge0\right)\)
Pt trở thành
\(t^2-5t+6=0\)
\(\Delta=b^2-4ac=\left(-5\right)^2-4.6=1>0\)
\(\Rightarrow\)Pt ó 2 nghiệm pb
\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+1}{2}=3\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-5-1}{2}-3\end{matrix}\right.\)
\(\Rightarrow t=x^2\Leftrightarrow t=\pm\sqrt{3}\)
Vậy \(S=\left\{\pm\sqrt{3}\right\}\)
\(4,x^3=9x\)
\(\Leftrightarrow x^3-9x=0\)
\(\Leftrightarrow x\left(x^2-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-9=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm3\end{matrix}\right.\)
Vậy \(S=\left\{0;\pm3\right\}\)
\(5,\left(x+2\right)\left(x-3\right)=x^2-4\)
\(\Leftrightarrow x^2-3x+2x-6-x^2+4=0\)
\(\Leftrightarrow-x-2=0\)
\(\Leftrightarrow-x=2\)
\(\Leftrightarrow x=-2\)
Vậy \(S=\left\{-2\right\}\)
giải pt :
√x^2 -4x +6 = x+4
√(x^2 -3x +2 ) -3 -x =0
√ 5x-1 -√3x-2 -√x-1 = 0
√x+1 + √x+10 = √x+6 +√x+5
√x+1 + √5x =√4x-3 + √2x+4
giải pt sau
1, \(\sqrt{5-2x}=6\)
2,\(\sqrt{2-x}-\sqrt{x+1}=0\)
3, \(\sqrt{4x^2+4x+1}=6\)
4,\(\sqrt{x^2-10x+25}=x-2\)
1) \(\sqrt{5-2x}=6\left(đk:x\le\dfrac{5}{2}\right)\)
\(\Leftrightarrow5-2x=36\)
\(\Leftrightarrow2x=-31\Leftrightarrow x=-\dfrac{31}{2}\left(tm\right)\)
2) \(\sqrt{2-x}=\sqrt{x+1}\left(đk:2\ge x\ge-1\right)\)
\(\Leftrightarrow2-x=x+1\)
\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)
3) \(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
4) \(\sqrt{x^2-10x+25}=x-2\left(đk:x\ge2\right)\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=x-2\)
\(\Leftrightarrow\left|x-5\right|=x-2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=x-2\left(x\ge5\right)\\x-5=2-x\left(2\le x< 5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5=2\left(VLý\right)\\x=\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)
Giải pt :
a)x5+x-1=0
b)x4+6x3+7x2-6x+1=0
c)x(x+4)(x+6)(4x+10)+128=0
a)x5+x-1=0
<=>(x5+x4+x3+x2+x)-(x4+x3+x2+x+1)=0
<=>(x4+x3+x2+x+1)(x-1)=0
Do x4+x3+x2+x+1>0
=>x+1=0
<=>x=1