tìm x,y
a)x.(y-1)=10
b)(x-1).(x+y)=9
Bài 1: Tìm số nguyên χ biết:
a) (χ+3)(χ+2)=0
b) (7-3χ)3=(-8)
Bài 2: Tìm tất cả các số nguyên x;y;z;t biết:
|x+y+z+9|=|y+z+t+6|=|z+t+x-9|=|t+x+y-6|=0
Bài 3: Tìm ba cặp số nguyên (a;b) sao cho 20a+10b=2010
Bài 1
a) (x + 3)(x + 2) = 0
x + 3 = 0 hoặc x + 2 = 0
*) x + 3 = 0
x = 0 - 3
x = -3 (nhận)
*) x + 2 = 0
x = 0 - 2
x = -2 (nhận)
Vậy x = -3; x = -2
b) (7 - x)³ = -8
(7 - x)³ = (-2)³
7 - x = -2
x = 7 + 2
x = 9 (nhận)
Vậy x = 9
Bài 3
20a + 10b = 2010
10b = 2010 - 20a
b = (2010 - 20a) : 10
*) a = 0
b = (2010 - 20.0) : 10 = 201
*) a = 1
b = (2010 - 10.1) : 10 = 200
*) a = 2
b = (2010 - 10.2) : 10 = 199
Vậy ta có ba cặp số nguyên (a; b) thỏa mãn:
(0; 201); (1; 200); (2; 199)
Bài 1: Tìm x và y
a) x/4 = y/-5 và -3x + 2y = 55
b) x/y = -7/4 và 4x - 5y = 72
c) x/ -3 = y/8 và x2 - y2 = -44/5
d) 3x3 + y3 = 64/9
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{-5}=\dfrac{-3x+2y}{-12-10}=\dfrac{55}{-22}=\dfrac{-5}{2}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{-20}{2}=-10\\y=\dfrac{25}{2}\end{matrix}\right.\)
b: Ta có: \(\dfrac{x}{y}=\dfrac{-7}{4}\)
nên \(\dfrac{x}{-7}=\dfrac{y}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{-7}=\dfrac{y}{4}=\dfrac{4x-5y}{-28-20}=\dfrac{72}{-48}=\dfrac{-3}{2}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{21}{2}\\y=\dfrac{-12}{2}=-6\end{matrix}\right.\)
c) \(\dfrac{x}{-3}=\dfrac{y}{8}\)
⇒\(\dfrac{x^2}{-9}=\dfrac{y^2}{64}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{-9}=\dfrac{y^2}{64}=-\dfrac{44}{\dfrac{5}{-9+64}}=-\dfrac{44}{\dfrac{5}{55}}=-484\)
tìm các STN x, y sao cho :a) ( 2x+ 1)(y-3)=10b) (3x-2)(2y-3)c) (x+1)(2y-1)=12d) (x+6) = y(x - 1)e) x - 3 = y( x + 2 )
a) x.y = -9 và x< y
b)x.y = 7 và x<y
c)x.y = -11 và x>y
a)(x+1)(y-2)=-3
b)(x-3)(y+1)=7
c)(x+5)(y+7)=-5
a: \(\left(x,y\right)\in\left\{\left(-9;1\right);\left(-1;9\right);\left(-3;3\right)\right\}\)
b: \(\left(x,y\right)\in\left\{\left(1;7\right);\left(-7;-1\right)\right\}\)
c: \(\left(x,y\right)\in\left\{\left(11;-1\right);\left(-11;1\right)\right\}\)
a: (x,y)∈{(−9;1);(−1;9);(−3;3)}(x,y)∈{(−9;1);(−1;9);(−3;3)}
b: (x,y)∈{(1;7);(−7;−1)}(x,y)∈{(1;7);(−7;−1)}
c: (x,y)∈{(11;−1);(−11;1)}
a) x.y = -9 và x< y
b)x.y = 7 và x<y
c)x.y = -11 và x>y
a)(x+1)(y-2)=-3
b)(x-3)(y+1)=7
c)(x+5)(y+7)=-5
a: \(\left(x,y\right)\in\left\{\left(-9;1\right);\left(-1;9\right);\left(-3;3\right)\right\}\)
b: \(\left(x,y\right)\in\left\{\left(1;7\right);\left(-7;-1\right)\right\}\)
c: \(\left(x,y\right)\in\left\{\left(11;-1\right);\left(-1;11\right)\right\}\)
tìm x,y
A) \(\dfrac{x}{y}=\dfrac{7}{4}\) và x+y=33
b) 3.(x-1)+5=-19
a,Ta có:
\(\dfrac{x}{y}=\dfrac{7}{4}=\dfrac{x}{7}=\dfrac{y}{4}\)
ÁP dụng tcdtsbn , ta có:
\(\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x+y}{7+4}=\dfrac{33}{11}=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=21\\y=12\end{matrix}\right.\)
b,
\(\Rightarrow3.\left(x-1\right)=-24\)
\(\Rightarrow x-1=-8\)
\(\Rightarrow x=-7\)
A)\(\dfrac{x}{y}=\dfrac{7}{4}\Rightarrow\dfrac{x}{7}=\dfrac{y}{4}\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x+y}{7+4}=\dfrac{33}{11}=3\)
\(\dfrac{x}{7}=3\Rightarrow x=21\\ \dfrac{y}{4}=3\Rightarrow y=12\)
B) \(3\left(x-1\right)+5=-19\\ \Rightarrow3\left(x-1\right)=-24\\ \Rightarrow x-1=-8\\ \Rightarrow x=-7\)
Tìm x,y
a)\(\dfrac{x}{3}=\dfrac{7}{y}\)
b)\(\dfrac{x}{y}=\dfrac{1}{6}\)
c)\(\dfrac{x}{7}=\dfrac{y}{-3}\)
a) Ta có: \(\dfrac{x}{3}=\dfrac{7}{y}\)
nên xy=21
b) Ta có: \(\dfrac{x}{y}=\dfrac{1}{6}\)
nên y=6x
c) Ta có: \(\dfrac{x}{7}=\dfrac{y}{-3}\)
nên -3x=7y
tìm số tự nhiên x thỏa nhãm
8 và 1/5 < x < 10
a . x = 9 , 10
b . x = 8
c . x = 10
d . x =8 , 9
tìm x;y
A) \(\dfrac{2}{5}x-\dfrac{1}{3}=-1\dfrac{1}{2}:\dfrac{5}{4}\)
B) x;y tỉ lệ thuận với 5 và 3 và x+y=32
c) x;y tỉ lệ nghịch với 5 và 3 và x+y = 32
a)Tìm giá trị của a,b biết:
a2- 2a + 6b +b2 = -10
b)Tính giá trị của biểu thức:
A=\(\dfrac{x+y}{z}+\dfrac{x+z}{y}+\dfrac{y+z}{x}\)
nếu \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Cao nhân giúp đỡ e với ạ
e cảm ơn trước
\(a^2-2a+6b+b^2=-10\\ \Leftrightarrow a^2-2a+1+b^2+6b+9=0\\ \Leftrightarrow\left(a-1\right)^2+\left(b+3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-3\end{matrix}\right.\)
Vậy \(\left(a;b\right)=\left(1;-3\right)\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\\ \Leftrightarrow xy+yz+zx=0\\ \Rightarrow\left\{{}\begin{matrix}xy+yz=-zx\\xy+zx=-yz\\yz+zx=-xy\end{matrix}\right.\)
Ta có:
\(A=\dfrac{xz+yz}{z^2}+\dfrac{xy+yz}{y^2}+\dfrac{xy+xz}{x^2}\\ =\dfrac{-xy}{z^2}+\dfrac{-xz}{y^2}+\dfrac{-yz}{x^2}\\ =-xyz\cdot\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\\ =-xyz\cdot\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}-\dfrac{2}{xy}-\dfrac{2}{yz}-\dfrac{2}{xz}\right)\\ =0\)