Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
toán khó mới hay
Xem chi tiết
Luyện Nguyễn Khắc
Xem chi tiết
Phan Văn Hiếu
4 tháng 9 2017 lúc 21:16

\(\frac{2002x^4+x^4\sqrt{x^2+2002}+x^2}{2001}=2002\)

\(\frac{x^2\left(x^2+2002\right)+x^4\sqrt{x^2+2002}}{2001}=2002\)

\(x^2\sqrt{x^2+2002}\left(\sqrt{x^2+2002}+x^2\right)=2002.2001\)

đặt x^2+2002=a

a-2002=x^2

pt \(\left(a-2002\right)\sqrt{a}\left(\sqrt{a}+a-2002\right)=2002.2001\)

Lưu Thị Thảo Ly
Xem chi tiết
Neet
26 tháng 1 2017 lúc 17:15

\(x^4+\sqrt{x^2+2002}=2002\) (DKXĐ: xác định vs mọi x)

\(\Leftrightarrow x^4+x^2+\frac{1}{4}+\sqrt{x^2+2002}=x^2+2002+\frac{1}{4}\)

\(\Leftrightarrow x^4+x^2+\frac{1}{4}=x^2+2002-\sqrt{x^2+2002}+\frac{1}{4}\)

\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2=\left(\sqrt{x^2+2002}-\frac{1}{2}\right)^2\)

xét \(x^2+\frac{1}{2}=\sqrt{x^2+2002}-\frac{1}{2}\Leftrightarrow x^2+1=\sqrt{x^2+2002}\)

\(\Leftrightarrow x^4+2x^2+1=x^2+2002\Leftrightarrow x^4+x^2-2001=0\)

đặt x2=a(a>0) => a2+a-2001=0

\(\Delta=1+4.2001=8005\rightarrow\left[\begin{matrix}a=\frac{\sqrt{8005}-1}{2}\\a=\frac{-\sqrt{8005}-1}{2}\end{matrix}\right.\)

mà a>0 \(\rightarrow a=\frac{\sqrt{8005}-1}{2}\Leftrightarrow x=\pm\sqrt{\frac{\sqrt{8005}-1}{2}}\)

xét\(x^2+\frac{1}{2}=\frac{1}{2}-\sqrt{x^2+2002}\Leftrightarrow x^2=-\sqrt{x^2+2002}\)(vô nghiệm)

vậy pt có 2 nghiệm là...

minh anh minh anh
26 tháng 1 2017 lúc 21:27

bạn ly ơi alibaa làm liệu có đúng k o toán math y

Nguyễn Minh Tuấn
Xem chi tiết
alibaba nguyễn
28 tháng 7 2017 lúc 14:09

\(x^4+\sqrt{x^2+2002}=2002\)

Đặt \(\sqrt{x^2+2002}=a^2>0\)

\(\Rightarrow\hept{\begin{cases}x^4+a^2=2002\left(1\right)\\a^4-x^2=2002\left(2\right)\end{cases}}\)

Lấy (1) - (2) ta được

\(x^4-a^4+x^2+a^2=0\)

\(\Leftrightarrow\left(x^2+a^2\right)\left(x^2-a^2+1\right)=0\)

\(\Leftrightarrow x^2+1=a^2=\sqrt{x^2+2002}\)

\(\Leftrightarrow x^4+2x^2+1=x^2+2002\)

\(\Leftrightarrow x^4+x^2-2001=0\)

Tới đây thì đơn giản rồi

alibaba nguyễn
28 tháng 7 2017 lúc 14:15

\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)

\(\Leftrightarrow\left(x^2+3x+1\right)^2=\left(x+3\right)^2\left(x^2+1\right)\)

\(\Leftrightarrow x^2=8\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{8}\\x=-\sqrt{8}\end{cases}}\)

Lyzimi
Xem chi tiết
alibaba nguyễn
26 tháng 1 2017 lúc 17:48

\(\sqrt{2002+x^2}=2002-x^4\)

\(\Leftrightarrow x^8-4004x^4-x^2+4006002=0\)

\(\Leftrightarrow\left(x^4-x^2-2002\right)\left(x^4+x^2-2001\right)=0\)

Làm tiếp nhé

Trần Đạt
Xem chi tiết
Neet
4 tháng 9 2017 lúc 0:06

\(Pt\Leftrightarrow2002x^4+x^4\sqrt{x^2+2002}+x^2-2002.2001=0\)

\(\Leftrightarrow x^4\left(\sqrt{x^2+2002}+2002\right)+x^2-2002.2001=0\)

\(\Leftrightarrow\dfrac{x^4}{\sqrt{x^2+2002}-2002}\left(x^2+2002-2002^2\right)+\left(x^2-2001.2002\right)=0\)

\(\Leftrightarrow\left(x^2-2001.2002\right)\left(\dfrac{x^4}{\sqrt{x^2+2002}-2002}+1\right)=0\)

Done !

Le Minh Hieu
Xem chi tiết
Tiểu Bảo Bảo
Xem chi tiết
Hung nguyen
16 tháng 11 2017 lúc 9:13

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{3x^2-x+2001}=a\\\sqrt[3]{3x^2-7x+2002}=b\\\sqrt[3]{6x-2003}=c\end{matrix}\right.\)

\(\Rightarrow a^3-b^3-c^3=2002\) từ đây ta có:

\(a-b-c=\sqrt[3]{a^3-b^3-c^3}\)

\(\Leftrightarrow\left(a-b-c\right)^3=\sqrt[3]{a^3-b^3-c^3}\)

\(\Leftrightarrow\left(a-c\right)\left(a-b\right)\left(b+c\right)=0\)

Tự làm nốt nhé

Hung nguyen
15 tháng 11 2017 lúc 9:29

Xem lại đề nhé bạn: \(\sqrt[3]{6x-2003}\) mới đúng chứ nhỉ?

bùi drangon2019
15 tháng 11 2017 lúc 11:42

a picece of cake

Hảo Đào thị mỹ
Xem chi tiết
Đỗ Lê Tú Linh
25 tháng 5 2016 lúc 11:00

\(\frac{\sqrt{x-2002}}{x-2002}-\frac{1}{x-2002}+\frac{\sqrt{y-2003}}{y-2003}-\frac{1}{y-2003}+\frac{\sqrt{z-2004}}{z-2004}-\frac{1}{z-2004}=\frac{3}{4}\)

\(1-\frac{1}{x-2002}+1-\frac{1}{y-2003}+1-\frac{1}{z-2004}=\frac{3}{4}\)

\(3-\frac{1}{x-2002}-\frac{1}{y-2003}-\frac{1}{z-2004}=\frac{3}{4}\)

\(\frac{1}{x-2002}+\frac{1}{y-2003}+\frac{1}{z-2004}=3-\frac{3}{4}=\frac{9}{4}\)

=> không có giá trị x,y,z thỏa mãn đề