Đặt \(A=\sqrt{x^2+2002}\)thì \(a^2=x^2+2002\Leftrightarrow a^2-x^2=2002\)
pt: \(\Leftrightarrow x^4+a=a^2-x^2\Leftrightarrow x^4-a^2+x^2+a=0\Leftrightarrow\left(x^2-a\right)\left(x^2+a\right)+\left(x^2+a\right)=0\)
\(\Leftrightarrow\left(x^2+a\right)\left(x^2-a+1\right)=0\)
\(x^2>0;a\ge\sqrt{2002}\)nên: \(x^2-a+1=0\Leftrightarrow x^2+1=\sqrt{x^2+2002}\)
Do 2 vế đều không âm nên ta bình phương 2 vế:\(x^4+2x^2+1=x^2+2002\Leftrightarrow x^4+x^2-2001=0\)
Tới đây pt trùng phương giải tiếp đi bn.