\(\sqrt{3x^2-6x+19}\)+\(\sqrt{x^2-2x+26}\)= 8-x2+2x
giải pt\(\sqrt{3x^2-6x+19}+\sqrt{x^2-2x+26}=8-x^2+2x\)
Gỉai phương trình \(\sqrt{3x^2-6x+19}+\sqrt{x^2-2x+26}=8-x^2+2x\)
\(\Leftrightarrow\sqrt{3\left(x-1\right)^2+16}+\sqrt{\left(x-1\right)^2+25}=9-\left(x-1\right)^2\)
Ta có: \(\left(x-1\right)^2\ge0\Rightarrow\sqrt{3\left(x-1\right)^2+16}\ge\sqrt{16}=4\)
\(\sqrt{\left(x-1\right)^2+25}\ge\sqrt{25}=5\)
\(\Rightarrow VT\ge4+5=9\)
\(VP=9-\left(x-1\right)^2\le9\le VT\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)
gpt:
\(\sqrt{3x^2-6x+19}+\sqrt{x^2-2x+26}=8-x^2+2x\)
giải phương trình
\(\sqrt{3x^2-6x+19}+\sqrt{x^2-2x+26}=8-x^2+2x\)
giúp mình với nhé đang cần gấp
Ta có:
\(VT=\sqrt{3x^2-6x+19}+\sqrt{x^2-2x+26}\)
\(=\sqrt{3\left(x-1\right)^2+16}+\sqrt{\left(x-1\right)^2+25}\ge4+5=9\)
\(VP=8-x^2+2x=9-\left(x-1\right)^2\le9\)
Dấu = xảy ra khi \(x=1\)
Tìm x biết:
a.\(\sqrt{18x}+2\sqrt{8x}-3\sqrt{2x}=12\)
b.\(\sqrt{9x+18}+2\sqrt{36x+72}-\sqrt{4x+8}=26\)
c.\(\sqrt{\left(x-2\right)^2}=10\)
d.\(\sqrt{9x^2-6x+1}=15\)
e.\(\sqrt{3x+4}=3x-8\)
c) \(\sqrt{\left(x-2\right)^2}=10\)
\(x-2=10\)
\(x=12\)
d) \(\sqrt{9x^2-6x+1}=15\)
\(\sqrt{\left(3x\right)^2-2.3x.1+1^2}=15\)
\(\sqrt{\left(3x-1\right)^2}=15\)
\(3x-1=15\)
\(3x=16\)
\(x=\dfrac{16}{3}\)
a) \(đk:x\ge0\)
\(pt\Leftrightarrow3\sqrt{2x}+4\sqrt{2x}-3\sqrt{2x}=12\)
\(\Leftrightarrow4\sqrt{2x}=12\Leftrightarrow\sqrt{2x}=3\Leftrightarrow2x=9\Leftrightarrow x=\dfrac{9}{2}\left(tm\right)\)
b) \(đk:x\ge-2\)
\(pt\Leftrightarrow3\sqrt{x+2}+12\sqrt{x+2}-2\sqrt{x+2}=26\)
\(\Leftrightarrow13\sqrt{x+2}=26\)
\(\Leftrightarrow\sqrt{x+2}=2\Leftrightarrow x+2=4\Leftrightarrow x=2\left(tm\right)\)
c) \(pt\Leftrightarrow\left|x-2\right|=10\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=10\\x-2=-10\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-8\end{matrix}\right.\)
d) \(pt\Leftrightarrow\sqrt{\left(3x-1\right)^2}=15\)
\(\Leftrightarrow\left|3x-1\right|=15\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=15\\3x-1=-15\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{16}{3}\\x=-\dfrac{14}{3}\end{matrix}\right.\)
e) \(đk:x\ge\dfrac{8}{3}\)
\(pt\Leftrightarrow3x+4=9x^2-48x+64\)
\(\Leftrightarrow9x^2-51x+60=0\)
\(\Leftrightarrow3\left(x-4\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)
a. \(\sqrt{18x}+2\sqrt{8x}-3\sqrt{2x}=12\) ĐK: \(x\ge0\)
<=> \(\sqrt{9.2x}+2\sqrt{4.2x}-3\sqrt{2x}=12\)
<=> \(3\sqrt{2x}+4\sqrt{2x}-3\sqrt{2x}=12\)
<=> \(\sqrt{2x}\left(3+4-3\right)=12\)
<=> \(4\sqrt{2x}=12\)
<=> \(\sqrt{2x}=12:4\)
<=> \(\sqrt{2x}=3\)
<=> 2x = 32
<=> 2x = 9
<=> \(x=\dfrac{9}{2}\) (TM)
b. \(\sqrt{9x+18}+2\sqrt{36x+72}-\sqrt{4x+8}=26\) ĐK: \(x\ge-2\)
<=> \(\sqrt{9\left(x+2\right)}+2\sqrt{36\left(x+2\right)}-\sqrt{4\left(x+2\right)}=26\)
<=> \(3\sqrt{x+2}+72\sqrt{x+2}-2\sqrt{x+2}=26\)
<=> \(\sqrt{x+2}\left(3+72-2\right)=26\)
<=> \(73\sqrt{x+2}=26\)
<=> \(\sqrt{x+2}=\dfrac{26}{73}\)
<=> x + 2 = \(\left(\dfrac{26}{73}\right)^2\)
<=> x + 2 = \(\dfrac{676}{5329}\)
<=> \(x=\dfrac{676}{5329}-2\)
<=> \(x=-1,873146932\) (TM)
c. \(\sqrt{\left(x-2\right)^2}=10\)
<=> \(\left|x-2\right|=10\)
<=> \(\left[{}\begin{matrix}x-2=10\left(x\ge2\right)\\x-2=-10\left(x< 2\right)\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=12\left(TM\right)\\x=-8\left(TM\right)\end{matrix}\right.\)
d. \(\sqrt{9x^2-6x+1}=15\)
<=> \(\sqrt{\left(3x-1\right)^2}=15\)
<=> \(\left|3x-1\right|=15\)
<=> \(\left[{}\begin{matrix}3x-1=15\left(x\ge\dfrac{16}{3}\right)\\3x-1=-15\left(x< \dfrac{16}{3}\right)\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{16}{3}\left(TM\right)\\x=\dfrac{-14}{3}\left(TM\right)\end{matrix}\right.\)
e. \(\sqrt{3x+4}=3x-8\) ĐK: \(x\ge\dfrac{-4}{3}\)
<=> 3x + 4 = (3x - 8)2
<=> 3x + 4 = 9x2 - 48x + 64
<=> 9x2 - 3x - 48x + 64 - 4 = 0
<=> 9x2 - 51x + 60 = 0
<=> 9x2 - 36x - 15x + 60 = 0
<=> 9x(x - 4) - 15(x - 4) = 0
<=> (9x - 15)(x - 4) = 0
<=> \(\left[{}\begin{matrix}9x-15=0\\x-4=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{15}{9}\left(TM\right)\\x=4\left(TM\right)\end{matrix}\right.\)
giải pt:
a, \(\sqrt{x-2}+\sqrt{y+1995}+\sqrt{z-1996}=\dfrac{1}{2}\left(x+y+z\right)\)
b\(\sqrt{3x^2-6x+19}+\sqrt{x^2-2x+26}=8-x^2+2x\)
c,\(\left(\sqrt{x+8}-\sqrt{x+3}\right)\left(\sqrt{x^2+11x+24}+1\right)=5\)
giúp tôi giải bài này với thank nhiều
Giải pt sau
a,\(^{x^2-6x+26=6\sqrt{2x+1}}\)
b,\(x^2+2x\sqrt{x-\dfrac{1}{x}}=3x+1\)
\(x^2+5x+6=3x+3\cdot4+2x-9\)
\(2\sqrt{x}+8x+5=5x-4+3x+19\)
\(5\sqrt{x}+2x-8=5x+4-3x-19\)
\(2x^2+5z+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)
\(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)
\(2\sqrt{3x}+11x-18=5x+2+6\cdot\sqrt{3x}+6x-21\)
Giải các phương trình dưới đây
1, \(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
2,\(\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\)
3, \(\sqrt{6y-y^2-5}-\sqrt{x^2-6x+10}=1\) (x=3 ; y=3)