chứng minh rằng với mọi số nguyên thì \(n^5+1999n+2017\) Không phải là số chính phương
CMR:\(n^5-1999n+2017\left(n\in Z\right)\)không phải là số chính phương.
Chứng minh rằng với mọi số nguyên y thì 2y+2005 không phải là số chính phương
Chứng minh rằng \(n^5+1999n+2017\) (n∈Z) không phải là số chính phương
Lời giải:
Sửa đề thành \(n\in\mathbb{N}\), vì nếu $n$ nguyên âm thì biểu thức không nguyên.
Đặt \(A=n^5+1999n+2017=n^5-n+2000n+2017\)
\(=n(n^4-1)+2000n+2017\)
\(=n(n^2-1)(n^2+1)+2000n+2017\)
--------------
Ta biết đến tính chất rất quen thuộc là một số chính phương chia $5$ thì dư $0,1$ hoặc $4$
Nếu \(n^2\equiv 0\pmod 5\Rightarrow n\equiv 0\pmod 5\) (do $5$ là snt)
\(\Rightarrow n(n^2-1)(n^2+1)\vdots 5\)
Nếu \(n^2\equiv 1\pmod 5\Rightarrow n^2-1\equiv 0\pmod 5\)
\(\Rightarrow n(n^2-1)(n^2+1)\vdots 5\)
Nếu \(n^2\equiv 4\pmod 5\Rightarrow n^2+1\equiv 5\equiv 0\pmod 5\)
\(\Rightarrow n(n^2-1)(n^2+1)\vdots 5\)
Tóm lại \(n(n^2-1)(n^2+1)\vdots 5, \forall n\in\mathbb{N}\)
\(\Rightarrow A=n(n^2-1)(n^2+1)+2000n+2015+2\) chia $5$ dư $2$. Do đó $A$ không thể là scp vì scp chia $5$ dư $0,1$ hoặc $4$
Ta có đpcm.
chứng minh với mọi số nguyên dương n thì 3^n+1+4^n+2021^n không phải là số chính phương
chứng minh với mọi số nguyên dương n thì 3^n+1+4^n+2021^n không phải là số chính phương
Chứng minh rằng với mọi n >2 thì số n ^ 2 - n + 2 không phải là số chính phương
Ta thấy: \(n^2-n+2=n^2-\frac{1}{2}.2.n+\frac{1}{4}+\frac{7}{4}=\left(n-\frac{1}{2}\right)^2+\frac{7}{4}\)
Vì (n-1/2)^2 là số chính phương mà 7/4 ko là số chính phương nên x^2 - n + 2 không phải là số chính phương với mọi n >= 2
1. Tìm các số nguyên x, y để :
x,(y-5) = -9
2. Chứng minh rằng với mọi số nguyên n thì :
a) A = (n+6).(n+7) luôn luôn chia hết cho 2
b) n2+n+2017 không chia hết cho 2
3. Cho a và b là hai số nguyên không chia hết cho 3 nhưng có cùng số dư khi chia cho 3. Chứng minh rằng hai số đó trừ 1 lại chia hết cho 3.
4. Cho A = 20+21+22+...+22017. Hỏi A có là số chính phương không? Vì sao ; A+1 có là số chính phương không?
Chứng minh rằng với mọi n thì 19^2n + 5n^n + 2002 không phải là số chính phương.
Cho B = (n^2 − 1)(n + 3)(n + 5) + 16. Chứng minh rằng với mọi số nguyên n thì B luôn có giá trị là số chính phương.
\(B=\left(n-1\right)\left(n+5\right)\left(n+1\right)\left(n+3\right)+16\)
\(=\left(n^2+4n-5\right)\left(n^2+4n+3\right)+16\)
\(=\left(n^2+4n\right)^2-2\left(n^2+4n\right)-15+16\)
\(=\left(n^2+4n-1\right)^2\) là số chính phương
\(B=\left(n^2-1\right)\left(n+3\right)\left(n+5\right)+16\\ \Rightarrow B=\left(n-1\right)\left(n+1\right)\left(n+3\right)\left(n+5\right)+16\\ \Rightarrow B=\left[\left(n-1\right)\left(n+5\right)\right]\left[\left(n+1\right)\left(n+3\right)\right]+16\\ \Rightarrow B=\left(n^2+4n-5\right)\left(n^2+4n+3\right)+16\\ \Rightarrow B=\left(n^2+4n-5\right)\left(n^2+4n-5+8\right)+16\\ \Rightarrow B=\left(n^2+4n-5\right)^2+8\left(n^2+4n-5\right)+16\\ \Rightarrow B=\left(n^2+4n-5+4\right)^2\\ \Rightarrow B=\left(n^2+4n-1\right)^2\)
Vậy B là số chính phương với mọi số nguyên n