Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Diệp Nguyễn Thị Huyền
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 8 2021 lúc 0:20

Từ \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)

\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

(Cách chứng minh tại đây):

Cho (x+\(\sqrt{y^2+1}\))(y+\(\sqrt{x^2+1}\))=1Tìm GTNN của P=2(x2+y2)+x+y  - Hoc24

\(\Rightarrow x+y=0\)

Do đó \(P=100\)

Lê Ngọc Ánh
18 tháng 10 2021 lúc 19:21

x,y thuộc N ôk

Khách vãng lai đã xóa
Miner Đức
Xem chi tiết
Ác Quỷ Bóng Đêm
Xem chi tiết
Big City Boy
Xem chi tiết
Rhider
26 tháng 11 2021 lúc 8:34

Đặt \(\left(x-1;y-2;z-3\right)=\left(a;b;c\right)=abc>0\)

Điều kiện bài toán trở thành :

\(a+1+b+2+c+3< 9\)

\(\sqrt{a+\sqrt{b}+\sqrt{c}}+\sqrt{c+5\left(a+1\right)+4\left(b+2\right)+3+\left(c+3\right)}\)

\(=\left(a+1\right)\left(b+2\right)=\left(b+2\right)\left(c+3\right)=\left(c+3\right)+\left(a+1\right)+11+a+b+c< 3\)

\(a+b+c< 3\)

\(=\sqrt{a+\sqrt{b}+\sqrt{c}+ab+bc+ca}\)

Mặt khác, do aa không âm, ta luôn có:

\(\text{(√a−1)2(a+2√a)≥0(a−1)2(a+2a)≥0}\)

\(\text{⇒a2−3a+2√a≥0⇒a2−3a+2a≥0}\)

\(\text{⇒2√a≥a(3−a)≥a(b+c)⇒2a≥a(3−a)≥a(b+c) (1)}\)

Hoàn toàn tương tự ta có:\(\text{ 2√b≥b(c+a)2b≥b(c+a) (2)}\)

\(\text{2√c≥c(a+b)2c≥c(a+b) (3)}\)

Cộng vế với vế (1);(2);(3):

\(\text{2(√a+√b+√c)≥2(ab+bc+ca)2(a+b+c)≥2(ab+bc+ca)}\)

\(\text{⇔√a+√b+√c≥ab+bc+ca⇔a+b+c≥ab+bc+ca}\)

Dấu "=" xảy ra khi và chỉ khi \(\text{a=b=c=0a=b=c=0 hoặc a=b=c=1a=b=c=1}\)

⇒x=...;y=...;z=...

Thắng Nguyễn
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Lan Ninh
1 tháng 5 2018 lúc 14:47

bạn vào trang này nhé có bài như thến này đấy 

//123doc.org//document/3173507-ren-luyen-chuyen-de-tim-maxmin-on-thi-thpt-quoc-gia.htm

hồ sỹ tú
20 tháng 5 2020 lúc 13:34

tính diện tích hình vẽ dưới đây

42.4 cm 25.7 cm 30cm 48.4cm 23m 31.6m

Khách vãng lai đã xóa
Nguyễn Thu Ngà
Xem chi tiết
Minh Nhân
16 tháng 4 2021 lúc 22:55

undefinedundefined

Lalisa Manobal
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2021 lúc 18:42

ĐKXĐ: ...

\(y\left(y^2-5y+4\right)+y^2=\left(y^2-5y+4\right)\sqrt{x+1}+x+1\)

\(\Leftrightarrow\left(y^2-5y+4\right)\left(y-\sqrt{x+1}\right)+\left(y+\sqrt{x+1}\right)\left(y-\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\left(y-\sqrt{x+1}\right)\left[\left(y-2\right)^2+\sqrt{x+1}\right]=0\)

\(\Leftrightarrow y=\sqrt{x+1}\Rightarrow y^2=x+1\)

Thế xuống pt dưới:

\(2\sqrt{x^2-3x+3}+6x-7=\left(x+1\right)\left(x-1\right)^2+x\sqrt{3x-2}\)

\(\Leftrightarrow2\left(\sqrt{x^2-3x+3}-1\right)+x\left(x-\sqrt{3x-2}\right)=x^3-7x+6\)

\(\Leftrightarrow\dfrac{2\left(x^2-3x+2\right)}{\sqrt{x^2-3x+3}+1}+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=\left(x+3\right)\left(x^2-3x+2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\\\dfrac{2}{\sqrt{x^2-3x+3}+1}+\dfrac{x}{x+\sqrt{3x-2}}=x+3\left(1\right)\end{matrix}\right.\)

Xét (1) với \(x\ge\dfrac{3}{2}\):

\(\dfrac{2}{\sqrt{x^2-3x+3}+1}\le8-4\sqrt{3}< 1\)

\(\sqrt{3x-2}\ge0\Rightarrow\dfrac{x}{x+\sqrt{3x-2}}\le1\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{\sqrt{x^2-3x+3}+1}+\dfrac{x}{x+\sqrt{3x-2}}< 2\\x+3>2\end{matrix}\right.\) 

\(\Rightarrow\left(1\right)\) vô nghiệm

Lei
Xem chi tiết