cho x,y,z là các số thực không âm thỏa mãn x+y+z=1.Tìm min
\(T=\left[\frac{\sqrt[3]{x+y+2z}\left(\sqrt{xy+z}+\sqrt{2x^2+2y^2}\right)}{3\sqrt[6]{xy}}\right]\left(x^2+y^2+z^2\right)-2\sqrt{2x^2-2x+1}\)
Cho x,y,z>0 thỏa mãn xyz=1. Tìm min \(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Cho x>-2, y>1 thỏa mãn\(\left(x+1\right)\left(x-y+5\right)+4-2y=\sqrt{y-1}-\sqrt{x+2}\). Tìm giá trị lớn nhất của \(M=4y-x-xy+2008\)
Cho 3 số dương a y z thỏa mãn xyz=1 ,tìm GTNN của
P= \(\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(y+x\right)}{x\sqrt{x}+2y\sqrt{y}}\)
1.Giải hệ phương trình
\(\hept{\begin{cases}y^3+\sqrt{8x^4-2y}=2\left(2x^4+3\right)\\\sqrt{2x^2+x+y}+2\sqrt{x+2y}=\sqrt{9x-2x^2+17y}\end{cases}}\)
2.Cho P(x) là đa thức bậc 3 có hệ số bậc cao nhất là 1 và thảo mãn:
P(2016)=2017;P(2017)=2018.Tính:-3P(2018)+P(2019)
3.Cho x,y,z\(\ge1\)thỏa mãn:\(3x^2+4y^2+5Z^2=32\)
Tìm min:x+y+z
Bài 1 Giải pt
\(a,5\sqrt{2x^3+16}=2\left(x^2+8\right)\)
\(b,2\left(3x+5\right)\sqrt{x^2-9}=3x^2+2x+30\)
Bài 2: Cho x,y,z>0 thỏa mãn \(xy+yz+xz=1\) .Tính gt bt
\(P=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}+z\sqrt{\frac{\left(1+y^2\right)\left(1+x^2\right)}{1+z^2}}}\)
Cho x,y,z là các số dương thay đổi và luôn thỏa mãn điều kiện xyz=1. Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Tìm x,y thỏa mãn :
\(^{\left(x+\sqrt{2015+x^2}\right)\left(y+\sqrt{2015+y^2}\right)=2015}_{3x^2+8y^2-12xy=23}\)
Cho x,y thỏa mãn \(\left(x+\sqrt{x^2+2016}\right)\left(y+\sqrt{y^2+2016}\right)=2016\)
Tìm MIN A= \(9x^4+7y^4-12x^2+4y^2+5\)