Giải các hệ
\(\left\{{}\begin{matrix}\sqrt{x+y}+\sqrt{2x+y+2}=7\\3x+2y=23\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y+x^3y+xy^2+xy=\frac{-5}{4}\\x^4+y^2+xy\left(1+2x\right)=\frac{-5}{4}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x^2+1\right)+y\left(x+y\right)=7y\\\left(x^2+1\right)\left(x+y-2\right)=-y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x\left(x+y+1\right)=3\\\left(x+y\right)^2-\frac{5}{x^2}=-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\frac{1}{2x}+\frac{x}{y}=\frac{3x+3\sqrt{y}}{4x^2+2y}\\4x+y=\sqrt{2x+6}-2\sqrt{y}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2\sqrt{2x^2-y^2}=y^2-2x^2+3\\x^3-2y^3=y-2x\end{matrix}\right.\)
Giai hệ PT sau:\(\left\{{}\begin{matrix}2x^2+xy=3y+6\\2y^2+xy=3x+6\end{matrix}\right.\)
\(\left\{{}\begin{matrix}xy+x^2=1+y\\yx+y^2=1+x\end{matrix}\right.\)
Giải hệ phương trình sau:
\(\left\{{}\begin{matrix}\sqrt{x^2+3x+2}-\sqrt{x+1}=2y\sqrt{y^2+1}+9-y-6y^2\\\sqrt{x^2+3x+2}+3\sqrt{x+1}=y\sqrt{y^2+1}-6+3y+4y^2\end{matrix}\right.\)
giải hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}+\dfrac{y}{x}=2+\dfrac{2\sqrt{x}}{y}\\2y^2-2y+1=3xy\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2-3x=y^2-y-2\\x^2+2y^2-3xy-2x+1=0\end{matrix}\right.\)
phương phát rút 1 ẩn phương trình (1) thế vào phương trình (2)
1 ,\(\left\{{}\begin{matrix}x-y=1+y\\2+x+y+xy=0\end{matrix}\right.\)
2 , \(\left\{{}\begin{matrix}x+2y=4\\x^2-3y^2-xy+2x-5y-4=0\end{matrix}\right.\)
3 , \(\left\{{}\begin{matrix}x^2+xy=2\\2x^2-y^2=11\end{matrix}\right.\)
4 , \(\left\{{}\begin{matrix}-x^2+y^2=10\\x+y=4\end{matrix}\right.\)
Giải các hệ phương trình :
a. \(\left\{{}\begin{matrix}2x-3y=1\\x+2y=3\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}2x+4y=5\\4x-2y=2\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}\dfrac{2}{3}x+\dfrac{1}{2}y=\dfrac{2}{3}\\\dfrac{1}{3}x-\dfrac{3}{4}y=\dfrac{1}{2}\end{matrix}\right.\)
d. \(\left\{{}\begin{matrix}0,3x-0,2y=0,5\\0,5x+0,4y=1,2\end{matrix}\right.\)