Cho điểm A không thuộc đường tròn (O;R), qua A vẽ 2 đường tròn d1 và d2; d1 cắt (O) tại B và C; d2 cắt (O) tại D và F. Chứng minh rằng \(AB.AC=AD.AE=\left|OA^2-R^2\right|\)
cho đường tròn tâm O đường kính AB. gọi tia Aa là tiếp tuyến của đường tròn O tại tiếp điểm A. lấy điểm C thuộc tia Aa sao cho C không trùng A. Đường thẳng qua B song song với đường thẳng OC cắt đường tròn O tại điểm D, với D không trùng B. gọi I là giao điểm của hai đường thẳng OCvà AD
1) chứng minh I là trung điểm của đoạn AD. chứng minh đường thẳng OC vuông góc với đường thẳng AD.
2)chứng minh CD là tiếp tuyến của đường tròn O
vẽ hình giúp mình giùm nha cảm ơn :v
1: Xét ΔBDA có
O là trung điẻm của AB
OI//BD
=>I là trung điểm của AD
ΔOAD cân tại O
mà OI là trung tuyến
nên OI vuông góc AD và OI là phân giác của góc AOD
2: Xét ΔOAC và ΔODC có
OA=OD
góc AOC=góc DOC
OC chung
Do đó: ΔOAC=ΔODC
=>góc ODC=90 độ
=>CD là tiếp tuyến của (O)
Cho đường tròn (O; R) và điểm M bất kì, biết rằng OM = R . Chọn khẳng định đúng?
A. Điểm M nằm ngoài đường tròn (O; R)
B. Điểm M nằm trên đường tròn (O; R)
C.Điểm M nằm trong đường tròn (O; R)
D. Điểm M không thuộc đường tròn (O; R)
Cho đường tròn (O) tâm O đường kính AB. Gọi tia Aa là tiếp truyến của đường tròn (O) tại tiếp điểm A. Lấy điểm C thuộc tia Aa sao cho C không trùng A. Đường thẳng qua B song song với đường thẳng OC cắt đường tròn (O) tại D, với D không trùng B. Gọi I là giao điểm của hai đường thẳng OC và AD.
1) Chứng minh I là trung điểm của đoạn AD. Chứng minh OC vuông góc với đường thẳng AD.
2) Chứng minh CD là tiếp tuyến của đường tròn (O)
Giúp mình với!!
Cho đường tròn (O). Đường thẳng (d) không đi qua tâm (O) cắt đường tròn tại hai điểm A và B theo thứ tự, C là điểm thuộc (d) ở ngoài đường tròn (O). Vẽ đường kính PQ vuông góc với dây AB tại D ( P thuộc cung lớn AB), Tia CP cắt đường tròn (O) tại điểm thứ hai là I, AB cắt IQ tại K.
a) Chứng minh tứ giác PDKI nội tiếp đường tròn.
b) Chứng minh CI.CP = CK.CD
c) Chứng minh IC là phân giác của góc ngoài ở đỉnh I của tam giác AIB.
d) Cho ba điểm A, B, C cố định. Đường tròn (O) thay đổi nhưng vẫn đi qua A và B. Chứng minh rằng IQ luôn đi qua một điểm cố định.
a) Tứ giác PDKI nọi tiếp đườngtròn đường kính PK.
b) Ta có \(\Delta CIK\sim\Delta CDP(g.g)\) nên \(CI.CP=CK.CD\).
c) Giả sử Q nằm trên cung nhỏ AB.
Khi đó Q là điểm chính giữa của cung nhỏ AB nên IQ là phân giác của góc AIB. Lại có IC vuông góc với IQ nên IC là phân giác ngoài của tam giác IAB.
b) Theo phương tích ta có CP . CI = CA . CB.
Lại có CK . CD = CI . CP nên CK . CD = CA . CB.
Mà C, A, B cố định và D là trung điểm của AB \(\Rightarrow\) D cố định nên K cũng cố định.
Vậy QI đi qua K cố định.
cho đường tròn ( o, r ) và điểm a cố định thuộc đường tròn . kẻ tia ax là tiếp tuyến của đường tròn ( o ) tại a . trên tia ax lấy điểm m cố định ( m không trùng a ) . đương thẳng d thay đổi đi qua m và không đi qua tâm o , cắt ( o ) tại hai điểm b và c ( b nằm giữa c và m ; abc < 90 độ ) . gọi i là trung điểm của bc .
1) chứng minh 4 điểm a , o , i , m cùng thuộc 1 đường tròn .
2) Vẽ đường kính AD của đường tròn (O). Gọi H là trực tâm tam giác ABC. CMR: H đối xứng với D qua I. TÍnh HA biết tâm O cách đường thẳng d là 2cm
1: Xét (O) có
OI là một phần đường kính
BC là dây
I là trung điểm của BC
Do đó: OI\(\perp\)BC
Xét tứ giác OAMI có
\(\widehat{OAM}+\widehat{OIM}=180^0\)
Do đó: OAMI là tứ giác nội tiếp
hay O,A,M,I thẳng hàng
cho đường tròn ( o, r ) và điểm a cố định thuộc đường tròn . kẻ tia ax là tiếp tuyến của đường tròn ( o ) tại a . trên tia ax lấy điểm m cố định ( m không trùng a ) . đương thẳng d thay đổi đi qua m và không đi qua tâm o , cắt ( o ) tại hai điểm b và c ( b nằm giữa c và m ; abc < 90 độ ) . gọi i là trung điểm của bc .
1) chứng minh 4 điểm a , o , i , m cùng thuộc 1 đường tròn .
2) Vẽ đường kính AD của đường tròn (O). Gọi H là trực tâm tam giác ABC. CMR: H đối xứng với D qua I. TÍnh HA biết tâm O cách đường thẳng d là 2cm
Em chưa học tứ giác nội tiếp nên có thể giải cho em cách khác được không ạ?
Cho đường tròn (O) và đường thẳng (d) cắt đường tròn (O) tại hai điểm M; N ( đường thẳng (d) không đi qua O). Lấy điểm A thuộc đường thẳng (d) (A nằm ngoài đường tròn). Qua A kẻ hai tiếp tuyến AB và AC với đường tròn (B, C là tiếp điểm).a) Chứng minh đường tròn ngoại tiếp tam giác ABC luôn đi qua hai điểm cố định khi A di chuyển trên (d).b) Kẻ tiếp tuyến tại M và N của đường tròn (O) cắt nhau tại P. Chứng minh B; C; P thẳng hàng.c) Kẻ đường kính BOD, đường thẳng qua O vuông góc với BD cắt CD tại E. Chứng minh AOCE là hình thang cân
cho đường tròn (O) bán kính R , đường thẳng d không đi qua O và cắt đường tròn tại 2 điểm A và B, từ 1 điểm C thuộc đường thẳng d, A nằm giữa B và C, vẽ tiếp tuyến CN với đường tròn , N thuộc cung lớn AB . Gọi E là trung điểm của AB
a) cm 4 điểm C,E,O,N cùng thuộc 1 đường tròn
b) cm CN2 = CA.CB
c) Gọi H là hình chiếu của N trên OC . cm ˆOABOAB^= ˆCHACHA^.
Tia CO cắt đường tròn (O) tại 2 điểm D,I , I nằm giữa C và D. Cm IC.DH = DC.IH
a: Ta có: ΔOAB cân tại O
mà OE là đường cao
nên OE\(\perp\)AB
Xét tứ giác OECN có \(\widehat{OEC}+\widehat{ONC}=90^0+90^0=180^0\)
nên OECN là tứ giác nội tiếp
=>O,E,C,N cùng thuộc một đường tròn
b: Xét (O) có
\(\widehat{CNA}\) là góc tạo bởi tiếp tuyến NC và dây cung NA
\(\widehat{ABN}\) là góc nội tiếp chắn cung AN
Do đó: \(\widehat{CNA}=\widehat{ABN}\)
Xét ΔCNA và ΔCBN có
\(\widehat{CNA}=\widehat{CBN}\)
\(\widehat{NCA}\) chung
Do đó: ΔCNA~ΔCBN
=>\(\dfrac{CN}{CB}=\dfrac{CA}{CN}\)
=>\(CN^2=CA\cdot CB\)
c: Xét ΔOCN vuông tại N có NH là đường cao
nên \(CH\cdot CO=CN^2\)
=>\(CH\cdot CO=CA\cdot CB\)
=>\(\dfrac{CH}{CB}=\dfrac{CA}{CO}\)
Xét ΔCHA và ΔCBO có
\(\dfrac{CH}{CB}=\dfrac{CA}{CO}\)
\(\widehat{HCA}\) chung
Do đó: ΔCHA~ΔCBO
=>\(\widehat{CHA}=\widehat{CBO}\)
mà \(\widehat{CBO}=\widehat{OAB}\)(ΔOAB cân tại O)
nên \(\widehat{CHA}=\widehat{OAB}\)
cho đường tròn (O) bán kính R , đường thẳng d không đi qua O và cắt đường tròn tại 2 điểm A và B, từ 1 điểm C thuộc đường thẳng d, A nằm giữa B và C, vẽ tiếp tuyến CN với đường tròn , N thuộc cung lớn AB . Gọi E là trung điểm của AB
a) cm 4 điểm C,E,O,N cùng thuộc 1 đường tròn
b) cm CN2 = CA.CB
c) Gọi H là hình chiếu của N trên OC . cm \(\widehat{OAB}\)= \(\widehat{CHA}\).
Tia CO cắt đường tròn (O) tại 2 điểm D,I , I nằm giữa C và D. Cm IC.DH = DC.IH
Cho đường tròn (O; R) và đường thẳng xy không có điểm chung với đường tròn. Lấy một điểm A bất kì thuộc xy. Từ A kẻ tiếp tuyến AB với đường tròn (O) (B là tiếp điểm). Qua B kẻ đường thẳng vuông góc với AO, cắt AO tại K và cắt đường tròn (O) tại điểm thứ hai là C. b. Chứng minh rằng: AC là tiếp tuyến của đường tròn (O). c. Kẻ OH vuông góc với xy tại H, BC cắt OH tại I. Chứng minh rằng khi A di chuyển trên đường thăng xy thì độ dài đoạn thắng OI không đổi.