Cho các số thực \(-1\le a;b;c\le1\) thỏa mãn \(a+b+c=0\)
Chứng minh: \(a^2+b^2+c^2\le2\)
Cho các số thực: 0\(\le\)a\(\le\)1; 0\(\le\)b\(\le\)1; 0\(\le\)c\(\le\)1 thoả mãn:
\(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}=\dfrac{3}{2}\)
Chứng minh: \(a^2+b^2+c^2=\dfrac{3}{2}\)
Áp dụng BĐT cosi:
\(a\sqrt{1-b^2}=\sqrt{a^2\left(1-b^2\right)}\le\dfrac{a^2+1-b^2}{2}\)
Tương tự cx có: \(b\sqrt{1-c^2}\le\dfrac{b^2+1-c^2}{2}\)
\(c\sqrt{1-a^2}\le\dfrac{c^2+1-a^2}{2}\)
Cộng vế với vế \(\Rightarrow VT\le\dfrac{3}{2}\)
Dấu = xảy ra <=> \(\left\{{}\begin{matrix}a^2=1-b^2\\b^2=1-c^2\\c^2=1-a^2\end{matrix}\right.\) \(\Leftrightarrow a^2+b^2+c^2=3-\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2=\dfrac{3}{2}\) (đpcm)
a)Cho các số thực không âm a,b,c thỏa mãn điều kiện a+b+c=1
cm: \(a^3+b^3+c^3\le\frac{1}{8}+a^4+b^4+c^4\)
b)Cho a,b,c là các số thực thỏa mãn a+b+c=1. Chứng minh:
\(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{9}{10}\)
Mình xài p,q,r nhé :))
Ta có:
\(a^3+b^3+c^3=p^3-3pq+3r=1-3q+3r\)
\(a^4+b^4+c^4=1-4q+2q^2+4r\)
Khi đó BĐT tương đương với:
\(\frac{1}{8}+2q^2+4r-4q+1\ge1-3q+3r\)
\(\Leftrightarrow2q^2-q+\frac{1}{8}+r\ge0\)
\(\Leftrightarrow2\left(q-\frac{1}{4}\right)+r\ge0\) ( đúng )
\(a^4+b^4+c^4+\frac{1}{8}\left(a+b+c\right)^4\ge\left(a^3+b^3+c^3\right)\left(a+b+c\right)\)
Khúc đầu có gì đâu nhỉ: \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(=p^3-3\left[\left(a+b+c\right)\left(ab+bc+ca\right)-abc\right]\)
\(=p^3-3pq+3r\)
--------------------------------------
\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=\left[\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\right]^2-2\left[\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)\right]\)
\(=\left(p^2-2q\right)^2-2\left(q^2-2pr\right)\)
\(=p^4-4p^2q+2q^2+4pr\)
Xem thêm các đẳng thức thông dụng tại: https://bit.ly/3hllKCq
Đọc xong lú luôn @_@. Khúc đầu chả hiểu gì hết
mà thôi cũng phải tk ông a 1 cái vì có tâm với nghề
Cho các số thực a,b,c thỏa mãn: \(-1\le a\le2;-1\le b\le2;-1\le c\le2\) và \(a+b+c=0\)
Chứng minh \(a^2+b^2+c^2\le6\)
\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0}\)
Tương tự \(\left(b+1\right)\left(b-2\right)\le0,\left(c+1\right)\left(c-2\right)\le0\)
=> (a+1)(a-2)+(b+1)(b-2)+(c+1)(c-2)\(\le\)0 => a2+b2+c2-(a+b+c)-6\(\le\)0
=>a2+b2+c2 \(\le\)6
Dấu "=" xảy ra <=> (a+1)( a-2)=0, (b+1)(b-2)=0, (c+1)(c-2)=0 , a+b+c=0 <=> a=2, b=c=-1 và các hoán vị
Cho các số thực \(a,b,c,d\) sao cho \(0\le a\le b\le c\le d\) và \(c+d=a^2+b^2+c^2+d^2=1\). Tìm giá trị lớn nhất của \(a+b\).
hhijestfijteryijryihrjgi
huhyhygtftfrhhfmmhjdhmjhmhxffhdfhdfghdfhdfhdfhhhfhhdfhhgfjgjghfghgghghhh
Ta có: \(a^2+b^2+c^2+d^2\ge\frac{\left(a+b\right)^2}{2}+\frac{\left(c+d\right)^2}{2}\)
\(\Leftrightarrow1\ge\frac{\left(a+b\right)^2}{2}+\frac{1}{2}\)
\(\Leftrightarrow a+b\le1\)
Vậy Max a+b=1 khi và chỉ khi a=b=c=d=1/2
cho a,b và c là các số thực không âm thỏa mãn a+b+c=1
Chứng minh \(\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\)
Cho hai số thực dương a và b thay đổi thỏa mãn đồng thời các điều kiện:
\(|a-2b|\le\frac{1}{\sqrt{a}},|b-2a|\le\frac{1}{\sqrt{b}};\)Tìm giá trị lớn nhất của tích ab.
Cho các số thực dương a, b, c thỏa mãn \(a\le b,a\le c\)và abc=1
Chứng minh \(a+b^2+c^2\ge\frac{1}{a}+\frac{1}{b^2}+\frac{1}{c^2}\)
Cho a,b là các số thực sao cho với mọi c > 0 ta có a < b+c
Chứng minh : \(a\le b\)
giả sử a\(\ge\)b
Khi đó \(\dfrac{a-b}{2}>0\)
Vì a<b+c với mọi c>0 nên \(c=\dfrac{a-b}{2}\)
Ta có: \(a\le b+\dfrac{a-b}{2}\) hay a<b ( mâu thuẫn )
=> giả sử a\(\ge\)b là sai
Vậy \(a\le b\)
Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\dfrac{1}{a+2b+c}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}\le\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\)
Cho a,b,c, là các số thực thỏa mãn a+b+c=1. Chứng minh
\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}\)