Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Thanh Thư
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 2 2021 lúc 22:32

Kẻ AE vuông góc BC \(\Rightarrow ED=\dfrac{BD}{2}=1\Rightarrow AE=\sqrt{AD^2-ED^2}=2\)

Theo định lý phân giác: \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\Rightarrow\dfrac{CD}{AC}=\dfrac{2}{\sqrt{5}}\Rightarrow AC=\dfrac{CD\sqrt{5}}{2}\)

Pitago: \(AE^2+EC^2=AC^2\)

\(\Leftrightarrow AE^2+\left(ED+DC\right)^2=AC^2\)

\(\Leftrightarrow4+\left(1+DC\right)^2=\dfrac{5CD^2}{4}\)

\(\Leftrightarrow\dfrac{1}{4}CD^2-2CD-5=0\) \(\Rightarrow\left[{}\begin{matrix}CD=10\\CD=-2\left(loại\right)\end{matrix}\right.\)

Big City Boy
Xem chi tiết
Akai Haruma
5 tháng 2 2021 lúc 0:53

Hình vẽ:

undefined

Akai Haruma
5 tháng 2 2021 lúc 1:01

Lời giải:

Kẻ $AH\perp BC$. Vì $AD=AB$ nên $ABD$ là tam giác cân tại $A$. Do đó đường cao $AH$ đồng thời là đường trung tuyến, hay $H$ là trung điểm $BD$

$\Rightarrow HD=BD:2=1$ (cm)

Áp dụng định lý Pitago:

$AH^2=AD^2-HD^2=5-1=4$ (cm)

$AC^2=AH^2+HC^2=AH^2+(HD+DC)^2$

$\Leftrightarrow AC^2=4+(1+DC)^2=5+DC^2+2DC(1)$

Theo định lý tia phân giác ta cũng có:

$\frac{BD}{DC}=\frac{AB}{AC}\Leftrightarrow \frac{2}{DC}=\frac{\sqrt{5}}{AC}(2)$

Từ $(1);(2)\Rightarrow DC=10$ (cm)

trần thị tuyết nhi
Xem chi tiết
jdbcjkervkver
Xem chi tiết
Dương Ánh Ngọc
Xem chi tiết
thảo lê
Xem chi tiết
nguyen hoang phuong linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 11 2021 lúc 22:58

a: Xét ΔABD và ΔAED có 

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

lilith.
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 12 2023 lúc 20:48

a: Xét ΔADB và ΔADE có

AD chung

\(\widehat{BAD}=\widehat{EAD}\)

AB=AE

Do đó: ΔADB=ΔADE

b: Ta có: ΔADB=ΔADE

=>\(\widehat{ABD}=\widehat{AED}\)

=>\(\widehat{ABC}=\widehat{AEF}\)

Xét ΔEAF và ΔBAC có

\(\widehat{AEF}=\widehat{ABC}\)

AE=AB

\(\widehat{EAF}\) chung

Do đó: ΔEAF=ΔBAC

=>AF=AC

c: Ta có: AB+BF=AF

AE+EC=AC

mà AB=AE và AF=AC

nên BF=EC

Ta có: \(\widehat{ABD}+\widehat{FBD}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)

nên \(\widehat{FBD}=\widehat{CED}\)

Ta có: ΔABD=ΔAED

=>DB=DE

Xét ΔDBF và ΔDEC có

DB=DE

\(\widehat{DBF}=\widehat{DEC}\)

BF=EC

Do đó: ΔDBF=ΔDEC

Nguyễn Thị Phương Thảo
Xem chi tiết
Đinh Tuấn Việt
4 tháng 7 2015 lúc 9:28

Kẻ \(CH\) vuông góc \(BA\) có góc HAC và AC = 6 cm được AH và HC => BH
Có BH và CH tính được góc BCH suy ra tính được góc ACB ( vì goc AHC=30o)
Kẻ \(AK\) vuông góc \(BC\) có góc ACB và AC => AK
Dễ dàng tính được góc ADC => góc ADK
Có ADK và AH tính được AD.

Lê Quang Nhật
4 tháng 7 2015 lúc 9:40

Vô lí dữ 

Tam giác ABC nhọn mà A= 120độ
Lại Thị Ngọc Mai
21 tháng 2 2017 lúc 18:04

=2 cậu ạ