Cho tam giác MNP biết 5\(\widehat{M}\) = 3\(\widehat{N}\); 7\(\widehat{M}\) - 4\(\widehat{N}\) = 150. Số đo góc \(\widehat{P}\) là ____
Cho tam giác MNP biết 5\(\widehat{M}\) = 3\(\widehat{N}\); 7\(\widehat{M}\) - 4\(\widehat{N}\) = 150. Số đo góc \(\widehat{P}\) là ____
Cho tam giác MNP biết 5\(\widehat{M}\) = 3\(\widehat{N}\); 7\(\widehat{M}\) - 4\(\widehat{N}\) = 150. Số đo góc \(\widehat{P}\) là ____
Ta có: 5\(\widehat{M}\) = 3\(\widehat{N}\) => \(\frac{\widehat{M}}{3}\) = \(\frac{\widehat{N}}{5}\) => \(\frac{7\widehat{M}}{21}\) = \(\frac{4\widehat{N}}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{7\widehat{M}}{21}\) = \(\frac{4\widehat{N}}{20}\) = \(\frac{7\widehat{M}-4\widehat{N}}{21-20}\) = 15o
Do \(\frac{7\widehat{M}}{21}\) = 15 => \(\widehat{M}\) = 45
\(\frac{4\widehat{N}}{20}\) = 15 => \(\widehat{N}\) = 75
Áp dụng tính chất tổng 3 góc trong 1 tam giác ta có:
\(\widehat{M}\) + \(\widehat{N}\) + \(\widehat{P}\) = 180 độ
=> 45 + 75 + \(\widehat{P}\) = 180
=> \(\widehat{P}\) = 60o
Vậy \(\widehat{P}\) = 60o.
Cho hai tam giác bằng nhau: Tam giác ABC và tam giác có ba đỉnh là M, N, P. Biết \(\widehat{A}=\widehat{N}\); \(\widehat{C}=\widehat{M}\). Hệ thức bằng nhau giữa hai tam giác theo thứ tự đỉnh tương ứng là:
A. △ABC = △MNP B. △ABC = △NPM
C. △BAC = △PMN D. △CAB = △MNP
Cho tam giác MNP có \(\widehat M = \widehat N\). Vẽ tia phân giác PK của tam giác \(MNP(K \in MN)\).
Chứng minh rằng:
a) \(\widehat {MKP} = \widehat {NKP}\);
b) \(\Delta MPK = \Delta NPK\);
c) Tam giác MNP có cân tại \(P\) không?
a)
Xét tam giác MPK có:
\(\widehat {PKM} + \widehat {MPK} + \widehat {KMP} = {180^o}\)
Xét tam giác NPK có:
\(\widehat {PKN} + \widehat {NPK} + \widehat {KNP} = {180^o}\)
Mà \(\widehat {KMP} = \widehat {KNP};\,\,\,\widehat {MPK} = \widehat {NPK}\)
Suy ra \(\widehat {MKP} = \widehat {NKP}\).
b)Xét hai tam giác MPK và NPK có:
\(\widehat {MPK} = \widehat {NPK}\)
PK chung
\(\widehat {MKP} = \widehat {NKP}\)
=>\(\Delta MPK = \Delta NPK\)(g.c.g)
c) Do \(\Delta MPK = \Delta NPK\) nên MP=NP (2 cạnh tương ứng)
=> Tam giác MNP cân tại P.
Cho tam giác MNP \(\widehat{N}>\widehat{P}\). Vẽ phân giác MI. CMR: \(\widehat{MIP}-\widehat{MIN}\)=\(\widehat{N}-\widehat{P}\)
Vì \(\widehat{MIN};\widehat{MIP}\) lần lượt là góc ngoài tg MIP và NIM nên
\(\widehat{MIP}-\widehat{MIN}=\widehat{IMN}+\widehat{N}-\widehat{IMP}-\widehat{P}==\widehat{N}-\widehat{P}\left(\widehat{IMN}=\widehat{IMP}\right)\)
cho tam giac MNP vuông tại M vẽ đường cao MH biết MH=18cm \(M\widehat{N}P\)=\(60^0\) tính diện tích tam giác MNP
Xét ΔMHN vuông tại H có
\(\sin N=\dfrac{MH}{MN}\)
nên \(MN=\dfrac{16\sqrt{3}}{3}\left(cm\right)\)
=>\(MP=16\left(cm\right)\)
\(S=8\cdot\dfrac{16\sqrt{3}}{3}=\dfrac{128\sqrt{3}}{3}\left(cm^2\right)\)
Hai tam giác ABC và tam giác MNP có A^=M^;B^=N^;AB=3cm,MN=5cm.\widehat{A}=\widehat{M};\widehat{B}=\widehat{N};AB=3cm,MN=5cm.A=M;B=N;AB=3cm,MN=5cm. Tính độ dài cạnh BC và NP, biết tổng của chúng là 24cm.
a) Cho tam giác DEG có góc E là góc tù. So sánh DE và DG.
b) Cho tam giác MNP có \(\widehat M = 56^\circ \), \(\widehat N = 65^\circ \). Tìm cạnh nhỏ nhất, cạnh lớn nhất của tam giác MNP.
a)
Trong tam giác DEG có góc E là góc tù (góc > 90°). Mà DG là cạnh đối diện với góc E nên DG là cạnh lớn nhất trong tam giác.
Vậy DE < DG.
b)
Tam giác MNP có \(\widehat M = 56^\circ \), \(\widehat N = 65^\circ \). Mà tổng ba góc trong một tam giác bằng 180°. Vậy \(\widehat P = 180^\circ - 56^\circ - 65^\circ = 59^\circ \).
Ta thấy: \(\widehat M < \widehat P < \widehat N\). Hay cạnh nhỏ nhất của tam giác MNP là NP (đối diện với góc M), cạnh lớn nhất của tam giác MNP là MP (đối diện với góc N).
Cho tam giác MNP có \(\widehat{M}\) = 25o. \(\widehat{N}\) = 80o thì góc ngoài của tam giác tại đỉnh P có số đo bằng?