2x=3y=4z;4x-3y+2z=18 tìm x,y,z
mọi người giải giúp mik với nha
1 , x = 3y = 2z và 2x - 3y + 4z = 48
2 , 2x = 3y = 4z và 2x - 3y + 4z = 48
Mn làm giúp e với ạ .
1: x=3y=2z
=>x/6=y/2=z/3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{2x-3y+4z}{2\cdot6-3\cdot2+4\cdot3}=\dfrac{48}{18}=\dfrac{8}{3}\)
=>x=48/3=16; y=16/3; z=8
2: 2x=3y=4z
=>x/6=y/4=z/3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{2x-3y+4z}{2\cdot6-3\cdot4+4\cdot3}=\dfrac{48}{12}=4\)
=>x=24; y=16; z=12
( 2x+3y+4z)2-2.( 2x+3y+4z).(-2y-4z)+(-4z-2y)
Biểu thức bạn viết không phân tích được thành nhân tử.
Có lẽ đề ntn sẽ đúng hơn:
$(2x+3y+4z)^2-2(2x+3y+4z)(-2y-4z)+(-4z-2y)^2$
$=[(2x+3y+4z)-(-2y-4z)]^2$
$=(2x+5y+8z)^2$
Yêu cầu đề là gì bạn cần viết rõ ra.
Ta có: \(\left(2x+3y+4z\right)^2-2\cdot\left(2x+3y+4z\right)\cdot\left(-2y-4z\right)+\left(-4z-2y\right)^2\)
\(=\left(2x+3y+4z+4z+2y\right)^2\)
\(=\left(2x+5y+8z\right)^2\)
Cho các số thực dương x, y, z thỏa mãn 2x + 3y + 4z = 2016
CMR: \(\frac{3y+4z+2021}{1+2x}+\frac{2x+4z+2021}{1+3y}+\frac{2x+3y+2021}{1+4z}\ge15\)
Đặt biểu thức ở vế trái là A.
Ta có: \(A+3=\frac{2x+3y+4z+2022}{1+2x}+\frac{2x+3y+4z+2022}{1+3y}+\frac{2x+3y+4z+2022}{1+4z}=\frac{4038}{1+2x}+\frac{4038}{1+3y}+\frac{4038}{1+4z}\ge4038.\frac{9}{3+2x+3y+4z}=4038.\frac{9}{2019}=18\)
Dấu "=" xảy ra khi và chỉ khi 2x = 3y = 4z = 672
tìm x,y,z biết
6) x=3y=2z và 2x-3y+4z=48
7) 2x=3y=-2z và 2x-3y+4z=48
\(x=3y=2z\)
\(\Rightarrow\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)
\(\Rightarrow\frac{2x}{2}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{2-6+12}=\frac{48}{8}=6\)
Rồi thế vào là ra thôi :
\(\frac{2x}{2}=6\Rightarrow x=..........\)
Rồi tương tự thôi
tìm x,y,z biết
6) x=3y=2z và 2x-3y+4z=48
7) 2x=3y=-2z và 2x-3y+4z=48
6)
\(x=3y=2z\)
\(\Rightarrow\frac{x}{6}=\frac{y}{2}=\frac{z}{3}\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{12-6+12}=\frac{48}{18}=\frac{24}{9}\)
\(\Rightarrow\begin{cases}x=16\\y=\frac{16}{3}\\z=8\end{cases}\)
7)
\(2x=3y=-2z\)
\(\Rightarrow\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y-\left(-4z\right)}{1-1-2}=\frac{48}{-2}=-24\)
\(\Rightarrow\begin{cases}x=-12\\y=-8\\z=12\end{cases}\)
6) *2x - 3y + 4z = 48
<=> 4z -2z +4z = 48
=> ( 4-2+4)z = 48
=> z=8 => 2z= 16
* 2x -3y + 4z =48
<=> 6y - 3y +6y =48
=> (6 - 3+ 6)y = 48
=> y= \(\frac{16}{3}\) => 3y = 16
* 2x - 3y + 4z =48
<=> 2x -x + 2x = 48
=> ( 2 -1 +2)x =48
=>x= 16
Bài 1 :
a, x = 3y = 2z và 2x - 3y + 4z = 48
b, 2x = 3y = -2z và 2x - 3y + 4z = 48
2x = 3y ; 4y = 5z và \(2x+3y-4z=56\)
\(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10};4y=5z\Rightarrow\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{10}=\dfrac{z}{8}\\ \Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{8}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{8}=\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{4z}{32}=\dfrac{2x+3y-4z}{30+30-32}=\dfrac{56}{28}=2\\ \Rightarrow\left\{{}\begin{matrix}x=30\\y=20\\z=16\end{matrix}\right.\)
Cho `2x^3=3y^3=4z^3`
`CMR:(\root{3}{2x^2+3y^2+4z^2})/(\root{3}{2}+\root{3}{3}+\root{3}{4})=1`
Giúp!
Đề bài sai/thiếu
Ví dụ: \(x=y=z=0\) thì \(2x^3=3y^3=4z^3\) nhưng \(\dfrac{\sqrt[3]{2x^2+3y^2+4z^2}}{\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{4}}=0\)
Nếu thêm điều kiện \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\) (với \(x;y;z\ne0\))
Đặt \(2x^3=3y^3=4z^3=k^3\Rightarrow\left\{{}\begin{matrix}x=\dfrac{k}{\sqrt[3]{2}}\\y=\dfrac{k}{\sqrt[3]{3}}\\z=\dfrac{k}{\sqrt[3]{4}}\end{matrix}\right.\)
Thay vào \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\Rightarrow\dfrac{\sqrt[3]{2}}{k}+\dfrac{\sqrt[3]{3}}{k}+\dfrac{\sqrt[3]{4}}{k}=1\)
\(\Rightarrow\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{4}=k\)
Lại có:
\(\left\{{}\begin{matrix}2x^3=k^3\Rightarrow2x^2=\dfrac{k^3}{x}\\3y^3=k^3\Rightarrow3y^2=\dfrac{k^3}{y}\\4z^3=k^3\Rightarrow4z^2=\dfrac{k^3}{z}\end{matrix}\right.\) \(\Rightarrow2x^2+3y^2+4z^2=k^3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=k^3\)
\(\Rightarrow\dfrac{\sqrt[3]{2x^2+3y^2+4z^2}}{\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{4}}=\dfrac{\sqrt[3]{k^3}}{k}=1\)
7/. 2x=3y=-2z và 2x-3y+4z=48
\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y+4z}{1-1-2}=\frac{48}{-2}=-24\)
=> \(\hept{\begin{cases}2x=-24\\3y=-24\\-2z=-24\end{cases}\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=12\end{cases}}}\)
\(2c=3y=-2zz\)
\(\Rightarrow\frac{2x}{1}=\frac{3y}{2}=\frac{-4z}{2}\)
Áp dụng tính chất của tỉ số bằng nhau ta có :
\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y-\left(-4z\right)}{1-1-2}=\frac{48}{-2}=-24\)
\(\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=12\end{cases}}\)
Ta có :
\(2x=3y=-2z\)
\(=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{-\frac{1}{2}}=\frac{2x}{\frac{1}{4}}=\frac{3y}{\frac{1}{9}}=\frac{4z}{-\frac{1}{8}}=\frac{2x-3y+4z}{\frac{1}{4}-\frac{1}{9}-\frac{1}{8}}=\frac{48}{\frac{1}{72}}=3456\)
Nên : \(2x=3456\Rightarrow x=1728\)
\(3y=3456\Rightarrow y=1152\)
\(-2z=3456\Rightarrow z=-1728\)
Vậy ....................
2x=3y ; 4y=5z và 2x+3y-4z=56
2x=3y; 4y=5z
Ta có: 2x+3y-4z=56
=>. 6y-4z=56
=> . 15z/2-4z=56
=> 7/2z=56
=> z= ...