Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Thị Thảo Nhi
Xem chi tiết
 Mashiro Shiina
15 tháng 7 2017 lúc 10:08

Đặt

\(S=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

\(S=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)

\(S=\dfrac{1}{2}\left(1-\dfrac{1}{99}\right)\)

\(S=\dfrac{49}{99}\)

\(\Rightarrow\dfrac{1}{x}-\dfrac{1}{9999}=\dfrac{49}{99}\)

\(\Rightarrow\dfrac{1}{x}=\dfrac{50}{101}\Leftrightarrow50x=101\Leftrightarrow x=\dfrac{101}{50}\)

Lê Mạnh Tiến Đạt
15 tháng 7 2017 lúc 9:32

Đặt \(M=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

\(M=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)

\(M=\dfrac{1}{2}\left(1-\dfrac{1}{99}\right)\)

\(M=\dfrac{1}{2}\cdot\dfrac{98}{99}\)

\(M=\dfrac{49}{99}\)

Học24
Xem chi tiết
thuongnguyen
8 tháng 1 2018 lúc 15:20

\(a.\left\{{}\begin{matrix}4\dfrac{1}{x}+\dfrac{1}{y}=12\\\dfrac{1}{x}+\dfrac{1}{y}=-3\end{matrix}\right.\) (1)

ĐK xác định : x≠0 ; y≠0

Đặt ẩn phụ : a = \(\dfrac{1}{x}\) ; b = \(\dfrac{1}{y}\)

Thay vào (1) ta được :

\(\left\{{}\begin{matrix}4a+b=12\\a+b=-3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}3a=15\\a+b=-3\end{matrix}\right.< =>\left\{{}\begin{matrix}a=5\\b=-8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{1}{8}\end{matrix}\right.\)

Vậy S = {(\(\dfrac{1}{5};-\dfrac{1}{8}\))}

\(b.\left\{{}\begin{matrix}5\dfrac{1}{x}+2\dfrac{1}{y}=6\\2\dfrac{1}{x}-\dfrac{1}{y}=3\end{matrix}\right.\) (2)

ĐK xác định : x≠0 ; y≠0

Đặt ẩn phụ : a = 1/x ; b = 1/y

Thay vào (2) ta được : \(\left\{{}\begin{matrix}5a+2b=6\\2a-b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}5a+2b=6\\4a-2b=6\end{matrix}\right.< =>\left\{{}\begin{matrix}9a=12\\2a-b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=\dfrac{4}{3}\\b=-\dfrac{1}{3}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-3\end{matrix}\right.\)

Vậy S = {(\(\dfrac{3}{4};-3\) )}

c) \(\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.\)

ĐK xác định : x≠0 ; y ≠0

Áp dụng quy tác cộng đại số ta có :

\(\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\3\dfrac{1}{x}-3\dfrac{1}{y}=15\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-3\dfrac{1}{y}=-13\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{3}{13}\\x=\dfrac{3}{28}\end{matrix}\right.\)

Vậy S = {(\(\dfrac{3}{28};\dfrac{3}{13}\))}

d) \(\left\{{}\begin{matrix}\dfrac{1}{x}-4\dfrac{1}{y}=5\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.\)

ĐK xác định : x≠0 ; y≠0

áp dụng quy tắc cộng đại số ta có :

\(\left\{{}\begin{matrix}\dfrac{1}{x}-4\dfrac{1}{y}=5\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.< =>\left\{{}\begin{matrix}2\dfrac{1}{x}-8\dfrac{1}{y}=10\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-5\dfrac{1}{y}=9\\\dfrac{1}{x}-4\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{5}{9}\\x=-\dfrac{5}{11}\end{matrix}\right.\)

Vậy S = {(\(-\dfrac{5}{11};-\dfrac{5}{9}\))}

e) ĐK xác định x≠0 ; y≠0

\(\left\{{}\begin{matrix}\dfrac{1}{x}-3\dfrac{1}{y}=4\\6\dfrac{1}{x}-\dfrac{1}{y}=2\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{1}{x}-3\dfrac{1}{y}=4\\18\dfrac{1}{x}-3\dfrac{1}{y}=6\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-17\dfrac{1}{x}=-2\\\dfrac{1}{x}-3\dfrac{1}{y}=4\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=\dfrac{17}{2}\\y=-\dfrac{17}{22}\end{matrix}\right.\)

Vậy S={(\(\dfrac{17}{2};-\dfrac{17}{22}\))}

Hồ Trần Yến Nhi
Xem chi tiết
Kiêm Hùng
11 tháng 5 2021 lúc 18:28

Câu a sử dụng pp thế

Câu b thì đặt \(\left\{{}\begin{matrix}u=\dfrac{1}{x}\\v=\dfrac{1}{y}\end{matrix}\right.\) ra được hệ mới, giải tìm u,v rồi tìm x,y

Sooun Lee
Xem chi tiết
Vô danh
10 tháng 3 2022 lúc 18:24

a, ĐKXĐ:\(\left\{{}\begin{matrix}x\ne0\\y\ne0\end{matrix}\right.\)

Đặt \(\dfrac{1}{x}=a,\dfrac{1}{y}=b\)

Hệ \(\Leftrightarrow\left\{{}\begin{matrix}a+b=\dfrac{1}{6}\\8a+5y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{18}\\b=\dfrac{1}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{18}\\\dfrac{1}{y}=\dfrac{1}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=18\\y=9\left(tm\right)\end{matrix}\right.\)

\(b,\left\{{}\begin{matrix}\dfrac{x-1}{2}-y=1\\2x+y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}-\dfrac{2y}{2}=\dfrac{2}{2}\\2x+y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-1-2y=2\\2x+y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-2y=3\\2x+y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Thanh Thanh
Xem chi tiết
Nguyễn Ngọc Huy Toàn
14 tháng 4 2022 lúc 14:24

a.\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{8}{x}+\dfrac{5}{y}=1\end{matrix}\right.\)

\(ĐK:x;y\ne0\)

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\) 

hpt trở thành:

\(\left\{{}\begin{matrix}a+b=\dfrac{1}{6}\\8a+5b=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{18}\\b=\dfrac{1}{9}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{18}\\\dfrac{1}{y}=\dfrac{1}{9}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=9\end{matrix}\right.\) ( tm )

Vậy nghiệm hpt: \(\left\{{}\begin{matrix}x=18\\y=9\end{matrix}\right.\)

Nguyễn Ngọc Huy Toàn
14 tháng 4 2022 lúc 14:27

b.\(\left\{{}\begin{matrix}\dfrac{x-1}{2}-y=1\\2x+y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}+2x=2\\2x+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1+4x}{2}=\dfrac{4}{2}\\2x+y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x=5\\2x+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\2.1+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Bá Thiên Trần
14 tháng 4 2022 lúc 14:30

a.\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{8}{x}+\dfrac{5}{y}=1\end{matrix}\right.\)

\(ĐK:x;y\ne0\)

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\) 

hpt trở thành:

\(\left\{{}\begin{matrix}a+b=\dfrac{1}{6}\\8a+5b=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{18}\\b=\dfrac{1}{9}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{18}\\\dfrac{1}{y}=\dfrac{1}{9}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=9\end{matrix}\right.\) ( tm )

Vậy nghiệm hpt: \(\left\{{}\begin{matrix}x=18\\y=9\end{matrix}\right.\)

b.\(\left\{{}\begin{matrix}\dfrac{x-1}{2}-y=1\\2x+y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}+2x=2\\2x+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1+4x}{2}=\dfrac{4}{2}\\2x+y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x=5\\2x+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\2.1+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Xem chi tiết

a: \(\left\{{}\begin{matrix}\dfrac{x}{35}-y=2\\y-\dfrac{x}{50}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{x-35y}{35}=2\\\dfrac{50y-x}{50}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-35y=70\\-x+50y=50\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15y=120\\x-35y=70\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=8\\x=70+35y=70+35\cdot8=350\end{matrix}\right.\)

b: ĐKXĐ: x<>0 và y<>0

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{3}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{y}=\dfrac{3}{16}-\dfrac{1}{4}=\dfrac{-1}{16}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=48\\\dfrac{1}{x}=\dfrac{1}{16}-\dfrac{1}{48}=\dfrac{2}{48}=\dfrac{1}{24}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=24\\y=48\end{matrix}\right.\left(nhận\right)\)

Câụ Bé Mùa Đông
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
7 tháng 1 2018 lúc 14:51

Giải hệ sau :

Câu a :

\(\left\{{}\begin{matrix}x+y=-1\\2x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\-x=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)

Vậy ...........................

Câu b :

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\) . Ta có :

\(\left\{{}\begin{matrix}a+b=\dfrac{1}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=\dfrac{3}{5}\\3a+4b=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-b=-\dfrac{7}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{7}{5}\\a=-\dfrac{6}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{7}{5}\\\dfrac{1}{y}=-\dfrac{6}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}\\y=-\dfrac{5}{6}\end{matrix}\right.\)

Vậy..................

nguyễn thị quyên
12 tháng 1 2018 lúc 22:44

\(a,\left\{{}\begin{matrix}2x-y=4\\x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\2x+10y=6\end{matrix}\right.\left\{{}\begin{matrix}11y=2\\2x+10y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x+10.\dfrac{2}{11}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x=\dfrac{46}{11}\end{matrix}\right.\left\{{}\begin{matrix}y=\dfrac{2}{11}\\x=\dfrac{23}{11}\end{matrix}\right.\)

google help
Xem chi tiết
Mai Huyền My
Xem chi tiết