Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tràn thị trúc oanh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 11 2017 lúc 3:41

Đáp án C

Bất phương trình (m + 1) x 2  + mx + m < 0, ∀x ∈ R khi và chỉ khi:

Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 4) Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 4)

Phan Quỳnh Như
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 2 2022 lúc 15:36

Trường hợp 1: m=-1

Bất phương trình sẽ là \(0x^2-2\cdot0\cdot x+4>=0\)(luôn đúng)

Trường hợp 2: m<>-1

\(\text{Δ}=\left(2m+2\right)^2-4\cdot4\cdot\left(m+1\right)\)

\(=4m^2+8m+4-16m-16\)

\(=4m^2-8m-12\)

\(=4\left(m^2-2m-3\right)\)

Để bất phương trình có nghiệm đúng với mọi x thực thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+1\right)< 0\\\left(m+1\right)>=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< m< 3\\m>=-1\end{matrix}\right.\Leftrightarrow-1< m< 3\)

Vậy: -1<=m<3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 3 2017 lúc 10:55

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 2 2017 lúc 13:39

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 7 2017 lúc 4:12

Nguyễn Thị Minh Thư
Xem chi tiết
Linh Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 3 2022 lúc 22:30

a: \(\text{Δ}=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)

để phương trình có hai nghiệm phân biệt thì m-2<>0

hay m<>2

Theo đề, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1-x_2=5\\x_1x_2=m-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x_1=m+5\\x_2=x_1-5\\x_1x_2=m-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+5}{2}\\x_2=\dfrac{m+5}{2}-5=\dfrac{m-5}{2}\\x_1x_2=m-1\end{matrix}\right.\)

\(\Leftrightarrow m^2-25=4m-4\)

\(\Leftrightarrow m^2-4m-21=0\)

=>(m-7)(m+3)=0

=>m=7 hoặc m=-3

 

 

 

Nguyễn Linh Chi
Xem chi tiết
Akai Haruma
28 tháng 8 2021 lúc 16:31

Lời giải:

Để pt có 2 nghiệm thì: 

\(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m+1)^2-m(m+5)=1-3m\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ m\leq\frac{1}{3}\end{matrix}\right.(1)\)

Áp dụng định lý Viet:

\(\left\{\begin{matrix} x_1+x_2=\frac{2(m+1)}{m}\\ x_1x_2=\frac{m+5}{m}\end{matrix}\right.\)

Để $x_1< 0< x_2$

$\Leftrightarrow x_1x_2< 0$

$\Leftrightarrow \frac{m+5}{m}< 0$

$\Leftrightarrow -5< m< 0(2)$

$x_1< x_2< 2$

\(\Leftrightarrow \left\{\begin{matrix} (x_1-2)(x_2-2)>0\\ x_1+x_2<4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_1x_2-2(x_1+x_2)+4>0\\ x_1+x_2<4\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{m+1}{m}>0\\ \frac{1-m}{m}< 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m>1\\ m< -1\end{matrix}\right.(3)\)

Từ $(1);(2);(3)$ suy ra $-5< m< -1$