Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bình Nguyên
Xem chi tiết
Đỗ Hạnh Quyên
25 tháng 3 2016 lúc 0:56

\(a^2=\left|z+\frac{1}{z}\right|^2=\left(z+\frac{1}{z}\right)\left(\overline{z}+\frac{1}{z}\right)=\left|z\right|^2+\frac{z^2+\overline{z}^2}{\left|z\right|^2}+\frac{1}{\left|z\right|^2}\)

                       \(=\frac{\left|z\right|^4+\left(z+\overline{z}\right)^2-2\left|z\right|^2+1}{\left|z\right|^2}\)

Do đó :

\(\left|z\right|^4-\left|z\right|^2\left(a^2+2\right)+1=-\left(z+\overline{z}\right)^2\le0\)

\(\Rightarrow\left|z\right|^2\in\left[\frac{a^2+2-\sqrt{a^4+4a^2}}{2};\frac{a^2+2+\sqrt{a^4+4a^2}}{2}\right]\)

\(\Rightarrow\left|z\right|\in\left[\frac{-a+\sqrt{a^4+4a^2}}{2};\frac{a+\sqrt{a^4+4a^2}}{2}\right]\)

max \(\left|z\right|=\frac{a+\sqrt{a^4+4a^2}}{2}\)

min \(\left|z\right|=;\frac{a+\sqrt{a^4+4a^2}}{2}\)

\(\Leftrightarrow z\in M,z=-\overline{z}\)

hacker144
Xem chi tiết
missing you =
20 tháng 11 2021 lúc 20:59

\(a,\)\(A=\left\{x\in R|x< 3\right\}\Rightarrow A=\left(\text{ -∞;3}\right)\)

\(B=\left\{-1;0;1;2;3;4;5\right\}\)

\(\Rightarrow A\cap B=\left\{-1;0;1;2\right\}\)

\(b,x=-1\Rightarrow y=1-2\left(-1\right)+m=m+3\) 

\(x=1\Rightarrow y=1-2+m=m-1\)

\(\Rightarrow C=(m-1;m+3]\subset A\)

\(\Rightarrow C\subset A\Leftrightarrow m+3< 3\Leftrightarrow m< 0\)

 

Phạm Lê Nam Bình
Xem chi tiết
o0o I am a studious pers...
Xem chi tiết
TÔi NgU xi
26 tháng 5 2017 lúc 22:29

bạn chỉ cần cố gắng là làm được

Lầy Văn Lội
26 tháng 5 2017 lúc 23:18

qui đồng đy :v

Luận Dương
5 tháng 4 2019 lúc 20:00

tự suy nghĩ nhé bn o0o I am a studious person o0o,chỉ cần ngồi quy đồng sau làm từng bước là được nhaaaaaaaaa :)) ^_^

KP9
Xem chi tiết
Phan uyển nhi
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 5 2021 lúc 22:15

\(S=sinx+siny+sin\left(3x+y\right)-sin\left(3x+y\right)-sin\left(x+y\right)\)

\(=sinx+siny-sin\left(x+y\right)\)

\(S^2=\left(sinx+siny-sin\left(x+y\right)\right)^2\le3\left(sin^2x+sin^2y+sin^2\left(x+y\right)\right)\)

\(S^2\le3\left(1-\dfrac{1}{2}\left(cos2x+cos2y\right)+sin^2\left(x+y\right)\right)\)

\(S^2\le3\left[1-cos\left(x+y\right)cos\left(x-y\right)+1-cos^2\left(x-y\right)\right]\)

\(S^2\le3\left[2+\dfrac{1}{4}cos^2\left(x+y\right)-\left[cos\left(x-y\right)-\dfrac{1}{2}cos\left(x+y\right)\right]^2\right]\le3\left[2+\dfrac{1}{4}cos^2\left(x+y\right)\right]\)

\(S^2\le3\left(2+\dfrac{1}{4}\right)=\dfrac{27}{4}\)

\(\Rightarrow S\le\dfrac{3\sqrt{3}}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=3\\c=2\end{matrix}\right.\)

AllesKlar
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 4 2022 lúc 20:49

Mọi điểm M biểu diễn z đều phải thỏa mãn 2 điều kiện: vừa thuộc đường tròn (C) vừa thuộc đường thẳng \(\Delta\)  (tham số P)

Do đó, M là giao điểm của (C) và \(\Delta\)

Hay tham số P  phải thỏa mãn sao cho (C) và \(\Delta\) có ít nhất 1 điểm chung

Hay hệ pt nói trên có nghiệm (thật ra chi tiết đó là thừa, chỉ cần biện luận (C) và \(\Delta\) có ít nhất 1 điểm chung \(\Rightarrow d\left(I;\Delta\right)\le R\) là đủ)

Tô Mì
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 15:58

a)     Đồ thị hàm số:

-        Với mỗi \(m \in \left[ { - 1;1} \right]\) chỉ có 1 giá trị \(\alpha  \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) sao cho \(\sin \alpha  = m\)

b)     Đồ thị hàm số:

-        Với mỗi \(m \in \left[ { - 1;1} \right]\) có 1 giá trị \(\alpha  \in \left[ {0;\pi } \right]\) sao cho \(\cos \alpha  = m\)

c)     Đồ thị hàm số:

 

-        Với mỗi \(m \in \mathbb{R}\), có 2 giá trị \(\alpha  \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) sao cho \(\tan \alpha  = m\)

d)     Đồ thị hàm số:

-        Với mỗi \(m \in \mathbb{R}\), có 2 giá trị \(\alpha  \in \left[ {0;\pi } \right]\) sao cho \(\cot \alpha  = m\)

Phan Võ Hoàng Tú
Xem chi tiết