(d):y=(k-1)x+n và hai điểm A(0;2), B(-1;0)
Cho n=2. Tìm k để (d) cắt Ox ở C sao cho diện tích tam giác OAC=2 lần diện tích tam giác OAB
Cho tam giác ABC có đỉnh A ( -2;3) và hai đường trung tuyến lần lượt có phương trình là \(2x-y+1=0\); \(x+y-4=0\) .Khi đó điểm nào sau đây thuộc thường thẳng BC
a. K (3;-1)
b. M (1;9)
c. Q (4;-1)
d. N (0;-13)
xin cách giải chi tiết vs ạ
Vì điểm A không thuộc hai đường trung tuyến trên nên hai đường trung tuyến đã cho xuất phát từ B và C.
Gọi BM, CN là các trung tuyến của tam giác.
Giả sử BM có phương trình \(x+y-4=0\), CN có phương trình \(2x-y+1=0\)
Gọi \(M=\left(m;4-m\right)\Rightarrow C\left(2m+2;5-2m\right)\)
Vì C thuộc đường thẳng \(2x-y+1=0\)
\(\Rightarrow2\left(2m+2\right)-\left(5-2m\right)+1=0\)
\(\Leftrightarrow m=0\)
\(\Rightarrow C=\left(2;5\right)\)
Tương tự ta tìm được \(B=\left(3;1\right)\)
\(\Rightarrow BC:4x+y-13=0\)
\(\Rightarrow M=\left(1;9\right)\in BC\)
Cho mặt phẳng toạ độ Oxy, cho đường thẳng y = ( k- 1)*x + n và 2 điểm A(0 ; 2) , B( -1 ; 0)
a, Tìm các giá tri của k và n để
+ d // d1 : y = x + ( 2 - k )
+ d đi qua 2 điểm A và B. Khi đó hãy viết phương trình đường thăng d2 đối xứng với đường thẳng d qua trục tung
b, Cho n = 2. Tìm k để đường thẳng d cắt Ox tại C sao cho diện tích tam giác AOC gấp đôi diện tích tam giác AOB
1. Cho hai điểm M (-1;3) và N (4;1). Tìm điểm K' trên trục hoành M,N,K thẳng hàng
2. Cho hai điểm M (-1;-3) và N (2;2). Tìm điểm P trên trục hoành và điểm Q trên trục tung sao cho M,N,P,Q thẳng hàng
3. Tìm a,b biết đường thẳng y = ax + b đi qua điểm M (0;-3) và cắt đường thẳng y = -x+3 tại điểm N có hoành độ bằng 2
1. Cho hai điểm M (-1;3) và N (4;1). Tìm điểm K' trên trục hoành M,N,K thẳng hàng
2. Cho hai điểm M (-1;-3) và N (2;2). Tìm điểm P trên trục hoành và điểm Q trên trục tung sao cho M,N,P,Q thẳng hàng
3. Tìm a,b biết đường thẳng y = ax + b đi qua điểm M (0;-3) và cắt đường thẳng y = -x+3 tại điểm N có hoành độ bằng 2
Trong mặt phẳng Oxy, cho parabol P : y = -x 2 và đường thẳng d đi qua điểm M 0;-1 có hệ số góc k. c Viết phương trình đường thẳng d . Chứng minh rằng với mọi giá trị của ,k d luôn cắt P tại hai điểm phân biệt A,B. giúp mình nha
Cho hàm số y=x^2 có đò thị (P) và đường thẳng (d) đi qua điểm M(1;2)có hệ số k khác 0
a/ Chứng minh rằng với mọi giá trị của k khác 0 đường thẳng (d) cắt (P) tại hai điểm phân biệt A và B
b/ Gọi Xa và Xb là hoành dộ hai diểm A và B. Chứng minh rằng Xa - Xb -Xa.Xb -2 =0
Cho hàm số y= -x2 có đồ thị (P) và đường thẳng (d) có hệ số góc k≠0 đi qua điểm I (0;-1).Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt A và B
Gọi đường thẳng (d) có hàm số y=kx+b (k khác 0) (do hàm số có hệ số góc là k )
Vì (d) đi qua I(0;-1) => -1=0k+b => b=-1
=> y=kx-1(d)
Xét phương trình hoành độ giao điểm chung của (P) và (d) ta có:
-x^2=kx-1
<=> x^2-kx-1=0 (1)
Xét phương trình có a=1;c=-1 => ac=-1 <0
=> (1) luôn có 2 nghiệm phân biệt
=> (P) và (d) luôn cắt nhau tại 2 điểm phân biệt
Cho parabol (P): \(y=2x^2+6x-1\)
Tìm giá trị của k để đường thẳng Δ: \(y=x\left(k+6\right)+1\) cắt parabol tại hai điểm phân biệt M,N sao cho trung điểm của đoạn thẳng MN nằm trên đường thẳng d: \(4x+2y-3=0\)
Câu 1. Đường thẳng y = (1 – a) x + 2 tạo với trục O x một góc tù. Khi đó, giá trị
của tham số a là
A. a≠1 B. a>1 C. a<1 D. a≠0
Câu 2. Tất cả các giá trị của k để đường thẳng y = 2x + k cắt Parabol y = x2 tại hai điểm phân biệt nằm về hai phía của trục tung là
A. k ≥ 0 B. k > 0 C. k = 0 D. k < 0
Câu 3. Phương trình bậc hai \(x^2-2\left(m-1\right)x-4m=0\) (với m là tham số) không có hai nghiệm phân biệt khi và chỉ khi
A. m ≤ -1 B. m ≥ -1 C. m > -1 D. m = -1