biết rằng từ điểm \(M\left(\dfrac{a}{b};-2\right)\) (a,b thuộc N*, a/b tối giản) kẻ được đến đường cong \(\left(C\right):y=f\left(x\right)=x^3-3x^2+2\) hai tiếp tuyến vuông góc thì tích ab là
Cho hàm số \(y=x^4-2mx^2+m\) và điểm A có hoành độ bằng 1 thuộc đồ thị hàm số. Tìm giá trị tham số m, biết rằng khoảng cách từ điểm \(B\left(\dfrac{3}{4};1\right)\) đến tiếp tuyến tại A đạt giá trị lớn nhất:
A. \(m=-1\)
B. \(m=0\)
C. \(m=1\)
D. \(m=2\)
\(y'=4x^3-4mx\Rightarrow y'\left(1\right)=4-4m\)
\(A\left(1;1-m\right)\)
Phương trình tiếp tuyến d tại A có dạng:
\(y=\left(4-4m\right)\left(x-1\right)+1-m\)
\(\Leftrightarrow\left(4-4m\right)x-y+3m-3=0\)
\(d\left(B;d\right)=\dfrac{\left|\dfrac{3}{4}\left(4-4m\right)-1+3m-3\right|}{\sqrt{\left(4-4m\right)^2+1}}=\dfrac{1}{\sqrt{\left(4-4m\right)^2+1}}\le1\)
Dấu "=" xảy ra khi và chỉ khi \(4-4m=0\Rightarrow m=1\)
y′=4x3−4mx⇒y′(1)=4−4my′=4x3−4mx⇒y′(1)=4−4m
A(1;1−m)A(1;1−m)
Phương trình tiếp tuyến d tại A có dạng:
y=(4−4m)(x−1)+1−my=(4−4m)(x−1)+1−m
⇔(4−4m)x−y+3m−3=0⇔(4−4m)x−y+3m−3=0
M = \(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)+x^2\)
Tính M theo a, b, c biết rằng x = \(\dfrac{1}{2}a+\dfrac{1}{2}b+\dfrac{1}{2}c\)
Ta có \(x=\dfrac{1}{2}a+\dfrac{1}{2}b+\dfrac{1}{2}c=\dfrac{a+b+c}{2}\)
Suy ra
M = (x - a)(x - b) + (x - b)(x - c) + (x - c)(x - a) + x2
= x2 - ax - bx + ab + x2 - bx - cx + bc + x2 - ax - cx + ac + x2
= 4x2 - 2ax - 2bx - 2cx + ab + bc + ac
= (2x)2 - 2x(a + b + c) + ab + bc + ac
= \(\left(2\cdot\dfrac{a+b+c}{2}\right)^2-\left(2\cdot\dfrac{a+b+c}{2}\right)\left(a+b+c\right)+ab+bc+ac\)
= ab + bc + ac
tìm tham số thỏa mãn yêu cầu bài toán:
a) tìm m biết đồ thị hàm số \(y=\dfrac{\left(2m+3\right)x-5}{x+1}\) có đường tiệm cận ngang đi qua điểm A (-1;3)
b) biết rằng đồ thị hàm số \(y=\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\) có đường tiệm cận ngang là đường thẳng y = -2
a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m+3\right)x-5}{x+1}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m+3\right)x-5}{x+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)
=>Đường thẳng y=2m+3 là đường tiệm cận ngang duy nhất của đồ thị hàm số \(y=\dfrac{\left(2m+3\right)x-5}{x+1}\)
Để đường thẳng y=2m+3 đi qua A(-1;3) thì 2m+3=3
=>2m=0
=>m=0
b: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)
=>Đường thẳng \(y=m^2-3m\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)
=>\(m^2-3m=-2\)
=>\(m^2-3m+2=0\)
=>(m-1)(m-2)=0
=>m=1 hoặc m=2
tìm tham số thỏa mãn yêu cầu bài toán:
a) tìm m biết đồ thị hàm số \(y=\dfrac{\left(m-5\right)x-1}{2x+1}\) có đường tiệm cận ngang đi qua điểm M (-2;1)
b) biết rằng đồ thị hàm số \(y=\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\) có đường tiệm cận ngang là đường thẳng y = 1
a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m-5\right)x-1}{2x+1}=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m-5\right)-\dfrac{1}{x}}{2+\dfrac{1}{x}}=\dfrac{m-5}{2}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(m-5\right)x-1}{2x+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{m-5-\dfrac{1}{x}}{2+\dfrac{1}{x}}=\dfrac{m-5}{2}\)
=>Đường thẳng \(y=\dfrac{m-5}{2}\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(m-5\right)x-1}{2x+1}\)
Để đường tiệm cận ngang \(y=\dfrac{m-5}{2}\) đi qua M(-2;1) thì \(\dfrac{m-5}{2}=1\)
=>m-5=2
=>m=7
b: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m-1\right)+\dfrac{1}{x}-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=2m-1\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m-1\right)+\dfrac{1}{x}-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=2m-1\)
=>\(y=2m-1\) là đường tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)
=>2m-1=1
=>2m=2
=>m=1
Tìm giá trị của biểu thức sau biết rằng a+b+c=0
\(A=\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)\)
\(\dfrac{c}{a-b}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\)
\(=1+\dfrac{c}{a-b}.\left(\dfrac{b^2-bc+ac-a^2}{ab}\right)\)
\(=1+\dfrac{c}{a-b}.\dfrac{\left(ac-bc\right)-\left(a^2-b^2\right)}{ab}\)
\(=1+\dfrac{c}{a-b}.\dfrac{c\left(a-b\right)-\left(a+b\right)\left(a-b\right)}{ab}\)
\(=1+\dfrac{c}{a-b}.\dfrac{\left(c-a-b\right)\left(a-b\right)}{ab}\)
\(=1+\dfrac{c^2-\left(ab+ac\right)}{ab}=1+\dfrac{c^2-c\left(a+b\right)}{ab}\)
\(a+b+c=0\Leftrightarrow a+b=-c\)
\(1+\dfrac{c^2-c\left(a+b\right)}{ab}=1+\dfrac{c^2-c.\left(-c\right)}{ab}=1+\dfrac{2c^2}{ab}=1+\dfrac{2c^3}{abc}\)
Chứng minh tương tự và cộng theo vế,sử dụng khi \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\),suy ra đpcm
Biết elip $\left( E \right): \, \dfrac{{ x^2}}{{{a}^2}}+\dfrac{{{y}^2}}{{{b}^2}}=1$ $\left( a>b>0 \right)$ đi qua hai điểm $A\left( 2\,;\,0 \right)$, $B\left( 1\,;\,\dfrac{\sqrt{3}}2 \right)$. Tìm $a\,,\,b$.
Theo đề ra ta có hệ :
\(\left\{{}\begin{matrix}\dfrac{4}{a^2}=1\\\dfrac{1}{a^2}+\dfrac{\dfrac{3}{4}}{b^2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\\dfrac{\dfrac{3}{4}}{b^2}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
Vậy (a,b) = (2,1)
ffacu &:(. Nfdjfvzusbczcfmbkck cho tôi một chiếc cốc ạ mẹ ơi về đi con đi mẹ vậy mẹ đừng ngủ đi mà nhưng không ngủ nhà thôi thôi nhà ơi không hỏi mẹ câu nhà ơi không hại thôi mà đâu của con này đi dài muộn 1 câu thành Việt và và sông mỗi vé là ngã rẽ kế rồi dài tôi mèo rẻ bò cao mèo màu câu thảo cặp già mòn nguồn gốc đến khen khén van kết
ffacu &:(. Nfdjfvzusbczcfmbkck cho tôi một chiếc cốc ạ mẹ ơi về đi con đi mẹ vậy mẹ đừng ngủ đi mà nhưng không ngủ nhà thôi thôi nhà ơi không hỏi mẹ câu nhà ơi không hại thôi mà đâu của con này đi dài muộn 1 câu thành Việt và và sông mỗi vé là ngã rẽ kế rồi dài tôi mèo rẻ bò cao mèo màu câu thảo cặp già mòn nguồn gốc đến khen khén van kết
Câu 4. Biết elip $\left( E \right): \, \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$, $\left( a>b>0 \right)$ đi qua hai điểm $A\left( 2\,;\,0 \right)$, $B\left( 1\,;\,\dfrac{\sqrt{3}}{2} \right)$. Tìm $a\,;\,b$.
+,Ta có :A thuộc E => thay x=2 và y=0 vào E ta đc a^2=4 => a=2 (loại a=-2 vì a<0 )
+, Tương tự thay B vào E => 3b^2=3 =>b=1(loại b=-1 vì b <0)
=> vậy a =2 b =1
học tốt ! :)))
Câu 1: (4,0 điểm) Tính hợp lý
a) \(\dfrac{-7}{25}+\dfrac{-18}{25}+\dfrac{4}{23}+\dfrac{5}{7}+\dfrac{19}{23}\)
b)\(\dfrac{7}{19}.\dfrac{8}{11}+\dfrac{7}{19}.\dfrac{3}{11}+\dfrac{12}{19}\)
c)\(\left(-25\right).125.4.\left(-8\right).\left(-17\right)\)
d) \(\dfrac{7}{35}.\dfrac{10}{19}+\dfrac{7}{35}.\dfrac{9}{19}-\dfrac{2}{35}\)
Câu 2: (3,0 điểm)
Tính giá trị các biểu thức sau
a. \(A=\dfrac{1}{2}\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...\left(1+\dfrac{1}{2015.2017}\right)\)
b.\(B=2x^2-3x+5\) với \(\left|x\right|=\dfrac{1}{2}\)
c. \(C=2x-2y+13x^3y^2\left(x-y\right)+15\left(y^2x-x^2y\right)+\left(\dfrac{2015}{2016}\right)^0\), biết x-y=0
Câu 3(4,0 điểm0
1.Tìm x,y biết : \(\left(2x-\dfrac{1}{6}\right)^2+\left|3y+12\right|\le0\)
2.Tìm x,y,z biết : \(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2};x+y+z=18\)
Câu 4: (3,0 điểm)
1. Tìm các số nguyên x,y biết : \(x-2xy+y-3=0\)
2. Cho đa thức f(x)=\(x^{10}-101x^9+101x^8-101x^7+...-101x+101.\)
Tính f(100)
Câu 5 (5,0 điểm)
Cho tam giác ABC có ba góc nhọn (AB<AC).Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE.Gọi I là giao điểm của CD và BE,K là giao điểm của AB và DC
a) Chứng minh rằng : tam giác ADC=tam giác ABE
b)Chứng minh rằng : góc DIB=60 độ
c) Gọi M và N lần lượt là trung điểm của CD và BE.Chứng minh rằng tam giác AMN là tam giác đều
d)Chứng minh rằng IA là phân giác của góc DIE
Câu 6: (1,0 điểm)
Cho tam giác ABC vuông tại A có AB=3cm,AC=4cm.Điểm I nằm trong tam giác và cách đều 3 cạnh tam giác ABc.Gọi M là chân đường vuông góc kẻ từ I đến BC.Tính MB
Tìm tỉ số của A và B , biết rằng :
A = \(\dfrac{1}{1.1981}+\dfrac{1}{2.1982}+.....+\dfrac{1}{n\left(1980+n\right)}.....+\dfrac{1}{25.2005}\)
B = \(\dfrac{1}{1.26}+\dfrac{1}{2.27}+......+\dfrac{1}{m\left(m+25\right)}+.......+\dfrac{1}{1980.2005}\)
Trogn đó A có 25 số hạng và B có 1980 số hạng
Ta có:
\(A=\dfrac{1}{1.1981}+\dfrac{1}{2.1982}+...+\dfrac{1}{n\left(1980+n\right)}+...+\dfrac{1}{25.2005}\)
\(=\dfrac{1}{1980}\left(\dfrac{1981-1}{1.1981}+\dfrac{1982-2}{2.1982}+...+\dfrac{1980+n-n}{n\left(1980+n\right)}+...+\dfrac{2005-25}{25.2005}\right)\)
\(=\dfrac{1}{1980}\left(1-\dfrac{1}{1981}+\dfrac{1}{2}-\dfrac{1}{1982}+...+\dfrac{1}{n}-\dfrac{1}{1980+n}+...+\dfrac{1}{25}-\dfrac{1}{2005}\right)\)
\(=\dfrac{1}{1980}\left[\left(1+\dfrac{1}{2}+...+\dfrac{1}{25}\right)-\left(\dfrac{1}{1981}+\dfrac{1}{1982}+...+\dfrac{1}{2005}\right)\right]\)
Lại có:
\(B=\dfrac{1}{1.26}+\dfrac{1}{2.27}+...+\dfrac{1}{m\left(m+25\right)}+...+\dfrac{1}{1980.2005}\)
\(=\dfrac{1}{25}\left(\dfrac{26-1}{1.26}+\dfrac{27-2}{2.27}+...+\dfrac{25+m-m}{m\left(25+m\right)}+...+\dfrac{2005-1980}{1980.2005}\right)\)
\(=\dfrac{1}{25}\left(\dfrac{1}{1}-\dfrac{1}{26}+\dfrac{1}{2}-\dfrac{1}{27}+...+\dfrac{1}{m}-\dfrac{1}{25+m}+...+\dfrac{1}{1980}-\dfrac{1}{2005}\right)\)
\(=\dfrac{1}{25}\left[\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{1980}\right)-\left(\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{2005}\right)\right]\)
\(=\dfrac{1}{25}\left[\left(1+\dfrac{1}{2}+...+\dfrac{1}{25}\right)-\left(\dfrac{1}{1981}+\dfrac{1}{1982}+...+\dfrac{1}{2005}\right)\right]\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{\dfrac{1}{1980}}{\dfrac{1}{25}}=\dfrac{5}{396}\)
Vậy tỉ số của \(A\) và \(B\) là \(\dfrac{5}{396}\)