Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quỳnh Anh
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 4 2022 lúc 12:58

\(y'=4x^3-4mx\Rightarrow y'\left(1\right)=4-4m\)

\(A\left(1;1-m\right)\)

Phương trình tiếp tuyến d tại A có dạng:

\(y=\left(4-4m\right)\left(x-1\right)+1-m\)

\(\Leftrightarrow\left(4-4m\right)x-y+3m-3=0\)

\(d\left(B;d\right)=\dfrac{\left|\dfrac{3}{4}\left(4-4m\right)-1+3m-3\right|}{\sqrt{\left(4-4m\right)^2+1}}=\dfrac{1}{\sqrt{\left(4-4m\right)^2+1}}\le1\)

Dấu "=" xảy ra khi và chỉ khi \(4-4m=0\Rightarrow m=1\)

Võ Quang Nhân
29 tháng 5 2022 lúc 18:47

y′=4x3−4mx⇒y′(1)=4−4my′=4x3−4mx⇒y′(1)=4−4m

A(1;1−m)A(1;1−m)

Phương trình tiếp tuyến d tại A có dạng:

y=(4−4m)(x−1)+1−my=(4−4m)(x−1)+1−m

⇔(4−4m)x−y+3m−3=0⇔(4−4m)x−y+3m−3=0

Thanh Tu Nguyen
Xem chi tiết
when the imposter is sus
18 tháng 6 2023 lúc 20:18

Ta có \(x=\dfrac{1}{2}a+\dfrac{1}{2}b+\dfrac{1}{2}c=\dfrac{a+b+c}{2}\)

Suy ra

M = (x - a)(x - b) + (x - b)(x - c) + (x - c)(x - a) + x2

    = x2 - ax - bx + ab + x2 - bx - cx + bc + x2 - ax - cx + ac + x2

    = 4x2 - 2ax - 2bx - 2cx + ab + bc + ac

    = (2x)2 - 2x(a + b + c) + ab + bc + ac

    = \(\left(2\cdot\dfrac{a+b+c}{2}\right)^2-\left(2\cdot\dfrac{a+b+c}{2}\right)\left(a+b+c\right)+ab+bc+ac\)

    = ab + bc + ac

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 1 2024 lúc 9:56

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m+3\right)x-5}{x+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m+3\right)x-5}{x+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)

=>Đường thẳng y=2m+3 là đường tiệm  cận ngang duy nhất của đồ thị hàm số \(y=\dfrac{\left(2m+3\right)x-5}{x+1}\)

Để đường thẳng y=2m+3 đi qua A(-1;3) thì 2m+3=3

=>2m=0

=>m=0

b: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)

=>Đường thẳng \(y=m^2-3m\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)

=>\(m^2-3m=-2\)

=>\(m^2-3m+2=0\)

=>(m-1)(m-2)=0

=>m=1 hoặc m=2

Khánh
13 tháng 7 2024 lúc 9:48

Đúng 

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 1 2024 lúc 9:07

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m-5\right)x-1}{2x+1}=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m-5\right)-\dfrac{1}{x}}{2+\dfrac{1}{x}}=\dfrac{m-5}{2}\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(m-5\right)x-1}{2x+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{m-5-\dfrac{1}{x}}{2+\dfrac{1}{x}}=\dfrac{m-5}{2}\)

=>Đường thẳng \(y=\dfrac{m-5}{2}\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(m-5\right)x-1}{2x+1}\)

Để đường tiệm cận ngang \(y=\dfrac{m-5}{2}\) đi qua M(-2;1) thì \(\dfrac{m-5}{2}=1\)

=>m-5=2

=>m=7

b: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m-1\right)+\dfrac{1}{x}-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=2m-1\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m-1\right)+\dfrac{1}{x}-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=2m-1\)

=>\(y=2m-1\) là đường tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)

=>2m-1=1

=>2m=2

=>m=1

Pharaoh Atem
Xem chi tiết
 Mashiro Shiina
3 tháng 11 2018 lúc 15:20

\(\dfrac{c}{a-b}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\)

\(=1+\dfrac{c}{a-b}.\left(\dfrac{b^2-bc+ac-a^2}{ab}\right)\)

\(=1+\dfrac{c}{a-b}.\dfrac{\left(ac-bc\right)-\left(a^2-b^2\right)}{ab}\)

\(=1+\dfrac{c}{a-b}.\dfrac{c\left(a-b\right)-\left(a+b\right)\left(a-b\right)}{ab}\)

\(=1+\dfrac{c}{a-b}.\dfrac{\left(c-a-b\right)\left(a-b\right)}{ab}\)

\(=1+\dfrac{c^2-\left(ab+ac\right)}{ab}=1+\dfrac{c^2-c\left(a+b\right)}{ab}\)

\(a+b+c=0\Leftrightarrow a+b=-c\)

\(1+\dfrac{c^2-c\left(a+b\right)}{ab}=1+\dfrac{c^2-c.\left(-c\right)}{ab}=1+\dfrac{2c^2}{ab}=1+\dfrac{2c^3}{abc}\)

Chứng minh tương tự và cộng theo vế,sử dụng khi \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\),suy ra đpcm

Thầy Cao Đô
Xem chi tiết
Xyz OLM
20 tháng 4 2023 lúc 21:18

Theo đề ra ta có hệ : 

 \(\left\{{}\begin{matrix}\dfrac{4}{a^2}=1\\\dfrac{1}{a^2}+\dfrac{\dfrac{3}{4}}{b^2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\\dfrac{\dfrac{3}{4}}{b^2}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

Vậy (a,b) = (2,1) 

Lý Thị Tố Uyên
13 tháng 2 lúc 19:58

ffacu &:(. Nfdjfvzusbczcfmbkck cho tôi một chiếc cốc ạ mẹ ơi về đi con đi mẹ vậy mẹ đừng ngủ đi mà nhưng không ngủ nhà thôi thôi nhà ơi không hỏi mẹ câu nhà ơi không hại thôi mà đâu của con này đi dài muộn 1 câu thành Việt và và sông mỗi vé là ngã rẽ kế rồi dài tôi mèo rẻ bò cao mèo màu câu thảo cặp già mòn nguồn gốc đến khen khén van kết

Lý Thị Tố Uyên
13 tháng 2 lúc 19:58

ffacu &:(. Nfdjfvzusbczcfmbkck cho tôi một chiếc cốc ạ mẹ ơi về đi con đi mẹ vậy mẹ đừng ngủ đi mà nhưng không ngủ nhà thôi thôi nhà ơi không hỏi mẹ câu nhà ơi không hại thôi mà đâu của con này đi dài muộn 1 câu thành Việt và và sông mỗi vé là ngã rẽ kế rồi dài tôi mèo rẻ bò cao mèo màu câu thảo cặp già mòn nguồn gốc đến khen khén van kết

Thầy Cao Đô
Xem chi tiết
Phạm Thị Hồng Thắm
21 tháng 4 2023 lúc 21:25

+,Ta có :A thuộc E => thay x=2 và y=0 vào E ta đc a^2=4 => a=2 (loại a=-2 vì a<0 )

+, Tương tự thay B vào E => 3b^2=3 =>b=1(loại b=-1 vì b <0)

=> vậy a =2 b =1 

học tốt ! :)))

Quang Duy
Xem chi tiết
Phương Trâm
4 tháng 8 2017 lúc 20:52

Đề hsg hả?

Nguyễn Thanh Hằng
4 tháng 8 2017 lúc 21:00

Nhìn đã nản, nhất là hình đóa

Nguyễn Trọng Phúc
Xem chi tiết
Hoang Hung Quan
5 tháng 4 2017 lúc 20:13

Ta có:

\(A=\dfrac{1}{1.1981}+\dfrac{1}{2.1982}+...+\dfrac{1}{n\left(1980+n\right)}+...+\dfrac{1}{25.2005}\)

\(=\dfrac{1}{1980}\left(\dfrac{1981-1}{1.1981}+\dfrac{1982-2}{2.1982}+...+\dfrac{1980+n-n}{n\left(1980+n\right)}+...+\dfrac{2005-25}{25.2005}\right)\)

\(=\dfrac{1}{1980}\left(1-\dfrac{1}{1981}+\dfrac{1}{2}-\dfrac{1}{1982}+...+\dfrac{1}{n}-\dfrac{1}{1980+n}+...+\dfrac{1}{25}-\dfrac{1}{2005}\right)\)

\(=\dfrac{1}{1980}\left[\left(1+\dfrac{1}{2}+...+\dfrac{1}{25}\right)-\left(\dfrac{1}{1981}+\dfrac{1}{1982}+...+\dfrac{1}{2005}\right)\right]\)

Lại có:

\(B=\dfrac{1}{1.26}+\dfrac{1}{2.27}+...+\dfrac{1}{m\left(m+25\right)}+...+\dfrac{1}{1980.2005}\)

\(=\dfrac{1}{25}\left(\dfrac{26-1}{1.26}+\dfrac{27-2}{2.27}+...+\dfrac{25+m-m}{m\left(25+m\right)}+...+\dfrac{2005-1980}{1980.2005}\right)\)

\(=\dfrac{1}{25}\left(\dfrac{1}{1}-\dfrac{1}{26}+\dfrac{1}{2}-\dfrac{1}{27}+...+\dfrac{1}{m}-\dfrac{1}{25+m}+...+\dfrac{1}{1980}-\dfrac{1}{2005}\right)\)

\(=\dfrac{1}{25}\left[\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{1980}\right)-\left(\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{2005}\right)\right]\)

\(=\dfrac{1}{25}\left[\left(1+\dfrac{1}{2}+...+\dfrac{1}{25}\right)-\left(\dfrac{1}{1981}+\dfrac{1}{1982}+...+\dfrac{1}{2005}\right)\right]\)

\(\Rightarrow\dfrac{A}{B}=\dfrac{\dfrac{1}{1980}}{\dfrac{1}{25}}=\dfrac{5}{396}\)

Vậy tỉ số của \(A\)\(B\)\(\dfrac{5}{396}\)