Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 2 2017 lúc 4:55

Đáp án C

Từ giả thiết, ta có hệ:

− b 2 a = − 2 4 a − 2 b + c = 5 a + b + c = − 1 ⇔ a = − 2 3 ; b = − 8 3 ; c = 7 3

⇒ S = a 2 + b 2 + c 2 = 13

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 7 2018 lúc 4:05

Đáp án D

bảo nguyễn
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 3 2023 lúc 21:32

Với \(a\ne0\) từ đề bài ta có:

\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=2\\4a+2b+c=1\\16a+4b+c=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4a+b=0\\4a+2b+c=1\\16a+4b+c=-3\end{matrix}\right.\)

\(\Rightarrow a=-1;b=4;c=-3\)

Vậy (P): \(y=-x^2+4x-3\)

Lê Minh Phương
Xem chi tiết
Rin Huỳnh
2 tháng 1 2022 lúc 1:18

y = ax2 + bx + c đạt Max bằng 5 tại x = -2

--> a < 0; \(\dfrac{4ac - b^2}{4a}\) = 5;

\(\dfrac{-b}{2a}\) = -2

--> b = 4a; \(\dfrac{4ac - 16a^2}{4a}\) = 5

--> b = c - 5 = 4a

Đồ thị hàm số đi qua M(1; -1)

--> a + b + c = -1

--> a + 4a + 4a + 5 = -1

<=> 9a = -6

<=> a = \(\dfrac{-2}{3}\) --> b = \(\dfrac{-8}{3}\); c = \(\dfrac{7}{3}\)

--> \(y = \dfrac{-2}{3}x^2\ -\)\(\dfrac{8}{3}x\) + \(\dfrac{7}{3}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 9 2017 lúc 15:24

Đáp án A

Đỗ hải
Xem chi tiết
Nguyễn Ngọc Lộc
31 tháng 12 2020 lúc 19:12

- Từ các giả thiết của đề bài ta có hệ phương trình :

\(\left\{{}\begin{matrix}\dfrac{1}{9}a+\dfrac{1}{3}b+c=-\dfrac{4}{3}\\4a+2b+c=7\\-\dfrac{b}{2a}=\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{9}a+\dfrac{1}{3}b+c=-\dfrac{4}{3}\\4a+2b+c=7\\2a+3b=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-2\\c=-1\end{matrix}\right.\)

Vậy hàm số trên có dạng : \(3x^2-2x-1=0\)

khong có
Xem chi tiết
Lê Thị Thục Hiền
24 tháng 9 2021 lúc 19:39

\(y=ax^2+bx+c\left(d\right)\)

Do y có gtln là 5 khi x=-2 

\(\Rightarrow\left\{{}\begin{matrix}5=a\left(-2\right)^2+b\left(-2\right)+c\\-\dfrac{b}{2a}=-2\\a< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a-2b+c=5\\4a-b=0\end{matrix}\right.\)

Có \(M\in\left(d\right)\Rightarrow a+b+c=-1\)

Có hệ \(\left\{{}\begin{matrix}4a-2b+c=5\\4a+b=0\\a+b+c=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{-2}{3}\\b=-\dfrac{8}{3}\\c=\dfrac{7}{3}\end{matrix}\right.\)(tm)

Vậy...

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 8 2017 lúc 2:20

Đáp án D

Hycyv Guvu
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 10 2022 lúc 13:14

Theo đề, ta có hệ:

\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=\dfrac{1}{2}\\-\dfrac{b^2-4ac}{4a}=\dfrac{3}{4}\\a+b+c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-a\\b^2-4ac=-\dfrac{3}{4}\cdot4a=-3a\\a+b+c=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=-a\\\left(-a\right)^2-4ac+3a=0\\a+b+c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1-a-b=1-a+a=1\\a^2+3a-4a=0\\b=-a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=1\\a=1\\b=-1\end{matrix}\right.\)