Cho tập hợp A = {x ∈ R: |3x - 2| ≥ 4} và B = (m; m + 2]. Giá trị của m để A ∩ B = ∅ là:
A. (-∞; - 2 3 ) ∪ [2; +∞)
B. [ - 2 3 ; 0)
C. (-∞; - 2 3 ] ∪ [2; +∞)
D. ( - 2 3 ; 2)
giúp mk vs m.n, HELP ME! THANK YOU.
Câu 1/ Cho hai tập hợp A = {x ∈ R | (2x - x2)(2x2 - 3x -) = 0} và B = {x ∈ R | (2x2 + x)(3x - 12m) = 0}. Với giá trị nào của m thì A = B?
Câu 2/ Cho các tập hợp A = [1 ; +∞), B = {x ∈ R | x2 + 1 = 0} và C = (0;4). Tập (A hợp B) giao C. Có bao nhiêu phần tử số nguyên.
Câu 3/ Cho hai tập hợp A= (m-1 ; 5], B = (3; 2020 - 5m) và A, B khác rỗng. Có bao nhiêu giá trị nguyên của m để A \ B = ∅
Câu 2:
\(\left(A\cup B\right)\cap C=A\cap C=[1;+\infty)\cap\left(0;4\right)=[1;4)\)
Tập này có 3 phần tử nguyên
https://meet.google.com/bfu-vyru-hhn
https://meet.google.com/bfu-vyru-hhn
Bài 1. Xác định tập hợp A ∩ B, A ∪ B, A \ B, CRAvới:
Bài 2. Cho tập hợp A = {x € R|3x + 2 ≤ 14} và B = [3m + 2; +∞). Tìm m để A∩B ≠Ø.
Bài 3. Tìm TXĐ hs sau:
Bài 4. Lập BBT và vẽ đồ thị hs sau:
a. y = x2 - 4x + 3
b. y = -x2 +2x - 3
c. y = x2 + 2x
d. y = -2x2 -2
Bài 5. Tìm Parabol y = ax2 - 4x + c, biết rằng Parabol :
Đi qua hai điểm A(1; -2) và B(2; 3).
Có đỉnh I(-2; -2).
Có hoành độ đỉnh là -3 và đi qua điểm P(-2; 1).
Có trục đối xứng là đường thẳng x = 2 và cắt trục hoành tại điểm (3; 0).
Bài 6. Giải các phương trình sau:
Bài 7. Biết X1, X2 là nghiệm của phương trình 5x2 - 7x + 1 = 0. Hãy lập phương trình bậc hai có các nghiệm
Bài 8.
lớp 1 mà có cả √ luôn. thật là tuổi trẻ tài cao
Wow tuổi trẻ tài cao
Lớp 1 bn j ơi bn nhảy cóc lớp ạ
\(A\cap B=\left\{1\right\}\)
\(A\cup B=\left\{-2;-1;0;1;2\right\}\)
Cho tập hợp A = {x ∈ R | x 2 − 4x + m + 2 = 0} và tập hợp B = {1; 2}. Tìm m để A ∩ B = ∅.
cho 2 tập hợp A={x\(\in\)R|(x-1)(x-2)(x-4)=0}, B={n\(\in\)N|n là ước của 4}. 2 tập hợp A và B, tập hợp nào là tập con của tập còn lại. 2 tập hợp A và B có bằng nhau không.
Để xác định xem tập hợp A có phải là tập con của tập hợp B hay không, ta cần kiểm tra xem tất cả các phần tử trong tập hợp A có thuộc tập hợp B hay không. Tương tự, để xác định xem tập hợp B có phải là tập con của tập hợp A hay không, ta cần kiểm tra xem tất cả các phần tử trong tập hợp B có thuộc tập hợp A hay không.
Tập hợp A được xác định bởi điều kiện (x-1)(x-2)(x-4)=0. Điều này có nghĩa là các giá trị của x mà khi thay vào biểu thức (x-1)(x-2)(x-4) thì biểu thức này sẽ bằng 0. Các giá trị này là 1, 2 và 4. Do đó, tập hợp A là {1, 2, 4}.
Tập hợp B được xác định bởi các ước của số 4. Số 4 có các ước là 1, 2 và 4. Do đó, tập hợp B cũng là {1, 2, 4}.
Vì tập hợp A và tập hợp B đều chứa các phần tử 1, 2 và 4, nên ta có thể kết luận rằng tập hợp A là tập con của tập hợp B và tập hợp B là tập con của tập hợp A.
Vậy, tập hợp A và tập hợp B là bằng nhau.
P(x)=5x2-2mx-3x3+4
Q(x)=-3x3+x-2+4x2
a) Tìm đa thức R(x) sao cho R(x)+Q(x)=P(x)
b)Xác định m để đa thức R(x) nhận x=2 làm một nghiệm; Tìm tập hợp nghiệm của đa thức R(x) ứng với giá trị của m vùa tìm được.
Cho hai tập hợp A = {x ∈ R | x ≥ 4} và B = {x ∈ R | 6 < x < 9}.a) Viết lại tập hợp A và B với kí hiệu khoảng, đoạn, nửa khoảng.b) Tìm tập hợp B\A.
\(A=[4;+\infty)\)
\(B=\left(6;9\right)\)
\(B\backslash A=\varnothing\)
Cho A={x€R/2x-2≥0} B={x€R/9-3x≥0} a) biểu diễn A,B thành khoảng,đoạn ,nửa khoảng b)Tìm A giao B ,A hợp B , A\B,B\A c) Liệt kê các tập hợp con của tập hợp
a: A=[1;+∞)
B=(-∞;3]
b: A giao B=[1;3]
A hợp B=R
A\B=(3;+∞)
B\A=(-∞;1)
Cho hai tập hợp \(A=\left(0;+\infty\right)\) và \(B=\left\{x\in R|mx^2-4x+m-3=0\right\}\). Tìm m để B có đúng 2 tập hợp con và \(B\subset A\)
\(mx^2-4x+m-3=0\left(1\right)\)
Để tập hợp B có đúng 2 tập con và \(B\subset A\) thì \(\left(1\right)\) có 2 nghiệm phân biệt cùng dương
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\P>0\\S>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4-m\left(m-3\right)>0\\\dfrac{m-3}{m}>0\\\dfrac{4}{m}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m-4< 0\\m< 0\cup m>3\\m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 4\\m< 0\cup m>3\\m>0\end{matrix}\right.\)
\(\Leftrightarrow3< m< 4\)
Ta có:
\(\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}\)
+) \(\overrightarrow{BG}=\dfrac{1}{3}\left(\overrightarrow{BM}+\overrightarrow{BN}\right)=\dfrac{1}{3}\left(-\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CN}\right)\)
\(=\dfrac{1}{3}\left(-\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{AC}-\overrightarrow{AB}-\dfrac{1}{2}\overrightarrow{DC}\right)=\dfrac{1}{3}\left(-\dfrac{13}{6}\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(=-\dfrac{13}{18}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
=> \(\overrightarrow{AG}=\dfrac{5}{18}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
Mặt khác:
\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}=\overrightarrow{AB}+k\overrightarrow{BC}=\overrightarrow{AB}+k\left(\overrightarrow{AC}-\overrightarrow{AB}\right)=\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\)
Để A, G, I thẳng hàng
=>\(\dfrac{\dfrac{5}{18}}{1-k}=\dfrac{\dfrac{1}{3}}{k}\Rightarrow k=\dfrac{6}{11}\)